On variational approach to the Hamilton-Jacobi PDE

Jan H. Chabrowski; Ke Wei Zhang

Commentationes Mathematicae Universitatis Carolinae (1993)

  • Volume: 34, Issue: 4, page 613-633
  • ISSN: 0010-2628

Abstract

top
In this paper we construct a minimizing sequence for the problem (1). In particular, we show that for any subsolution of the Hamilton-Jacobi equation ( * ) there exists a minimizing sequence weakly convergent to this subsolution. The variational problem (1) arises from the theory of computer vision equations.

How to cite

top

Chabrowski, Jan H., and Zhang, Ke Wei. "On variational approach to the Hamilton-Jacobi PDE." Commentationes Mathematicae Universitatis Carolinae 34.4 (1993): 613-633. <http://eudml.org/doc/247459>.

@article{Chabrowski1993,
abstract = {In this paper we construct a minimizing sequence for the problem (1). In particular, we show that for any subsolution of the Hamilton-Jacobi equation $(\ast )$ there exists a minimizing sequence weakly convergent to this subsolution. The variational problem (1) arises from the theory of computer vision equations.},
author = {Chabrowski, Jan H., Zhang, Ke Wei},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Young measures; computer vision equations; Hamilton-Jacobi PDE},
language = {eng},
number = {4},
pages = {613-633},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On variational approach to the Hamilton-Jacobi PDE},
url = {http://eudml.org/doc/247459},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Chabrowski, Jan H.
AU - Zhang, Ke Wei
TI - On variational approach to the Hamilton-Jacobi PDE
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 4
SP - 613
EP - 633
AB - In this paper we construct a minimizing sequence for the problem (1). In particular, we show that for any subsolution of the Hamilton-Jacobi equation $(\ast )$ there exists a minimizing sequence weakly convergent to this subsolution. The variational problem (1) arises from the theory of computer vision equations.
LA - eng
KW - Young measures; computer vision equations; Hamilton-Jacobi PDE
UR - http://eudml.org/doc/247459
ER -

References

top
  1. Adams R.A., Sobolev spaces, Academic Press New York (1975). (1975) Zbl0314.46030MR0450957
  2. Ball J.M., A version of the fundamental theorem for Young measures, Lecture Notes in Physics, Springer Verlag 344 (1988), 207-215. (1988) MR1036070
  3. Berliochi H., Lasry J.M., Intégrandes normales et mesures parametrées en calcul des variations, (1973), 101 Bull. Soc. Math. France. (1973) MR0344980
  4. Brooks M.J., Chojnacki W., Kozera R., Shading without shape, Quarterly of Appl. Math., in press. Zbl0763.35103MR1146621
  5. Brooks M.J., Chojnacki W., Kozera R., Circularly-symmetric eikonal equations and non-uniqueness in computer vision, J. Math. Analysis and Appl., in press. Zbl0799.35036
  6. Anna R. Bruss, The eikonal equation: some results applicable to computer vision, J. Math. Phys. (1982), 23(5) 890-896. (1982) MR0655907
  7. Chabrowski J., Zhang K., On shape from shading problem, Functional Analysis, Approximation Theory and Numerical Analysis, to appear in: Volume 1 dedicated to S. Banach, S. Ulam and A. Ostrowski, World Scientific Publishing, Singapore. Zbl0878.35026MR1298653
  8. Chabrowski J., Zhang K., On variational approach to photometric stereo, Ann. de l'Institut H. Poincaré, Analyse non linéaire, in press. Zbl0821.49027
  9. Dacorogna B., Direct methods in the calculus of variations, Applied Mathematical Sciences 78 Springer Verlag, Berlin - Heidelberg (1989). (1989) Zbl0703.49001MR0990890
  10. Deift P., Sylvester J., Some remarks on the shape-from-shading problem in computer vision, J. Math. Anal. Appl. (1982), 84(1) 235-248. (1982) MR0639534
  11. Ekeland I., Temam R., Analyse convexe et problèmes variationnels, Dunod Paris (1974). (1974) Zbl0281.49001MR0463993
  12. Lawrence C. Evans, Weak convergence methods for nonlinear partial differential equations, CBMS Regional Conference Series in Mathematics (74) Amer. Math. Soc. MR1034481
  13. Kohn R.V., Strang G., Optimal design and relaxation of variational problems, I, (1986), 39 Comm. Pure and Applied Math. 113-137. (1986) Zbl0609.49008MR0820342
  14. Kozera R., Existence and uniqueness in photometric stereo, Applied Mathematics and Computation (1991), 44(1) 1-103. (1991) Zbl0732.53005MR1110435
  15. Tartar L., Compensated compactness, Heriot-Watt Symposium (1978), 4. (1978) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.