On variational approach to the Hamilton-Jacobi PDE
Jan H. Chabrowski; Ke Wei Zhang
Commentationes Mathematicae Universitatis Carolinae (1993)
- Volume: 34, Issue: 4, page 613-633
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topChabrowski, Jan H., and Zhang, Ke Wei. "On variational approach to the Hamilton-Jacobi PDE." Commentationes Mathematicae Universitatis Carolinae 34.4 (1993): 613-633. <http://eudml.org/doc/247459>.
@article{Chabrowski1993,
abstract = {In this paper we construct a minimizing sequence for the problem (1). In particular, we show that for any subsolution of the Hamilton-Jacobi equation $(\ast )$ there exists a minimizing sequence weakly convergent to this subsolution. The variational problem (1) arises from the theory of computer vision equations.},
author = {Chabrowski, Jan H., Zhang, Ke Wei},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Young measures; computer vision equations; Hamilton-Jacobi PDE},
language = {eng},
number = {4},
pages = {613-633},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On variational approach to the Hamilton-Jacobi PDE},
url = {http://eudml.org/doc/247459},
volume = {34},
year = {1993},
}
TY - JOUR
AU - Chabrowski, Jan H.
AU - Zhang, Ke Wei
TI - On variational approach to the Hamilton-Jacobi PDE
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 4
SP - 613
EP - 633
AB - In this paper we construct a minimizing sequence for the problem (1). In particular, we show that for any subsolution of the Hamilton-Jacobi equation $(\ast )$ there exists a minimizing sequence weakly convergent to this subsolution. The variational problem (1) arises from the theory of computer vision equations.
LA - eng
KW - Young measures; computer vision equations; Hamilton-Jacobi PDE
UR - http://eudml.org/doc/247459
ER -
References
top- Adams R.A., Sobolev spaces, Academic Press New York (1975). (1975) Zbl0314.46030MR0450957
- Ball J.M., A version of the fundamental theorem for Young measures, Lecture Notes in Physics, Springer Verlag 344 (1988), 207-215. (1988) MR1036070
- Berliochi H., Lasry J.M., Intégrandes normales et mesures parametrées en calcul des variations, (1973), 101 Bull. Soc. Math. France. (1973) MR0344980
- Brooks M.J., Chojnacki W., Kozera R., Shading without shape, Quarterly of Appl. Math., in press. Zbl0763.35103MR1146621
- Brooks M.J., Chojnacki W., Kozera R., Circularly-symmetric eikonal equations and non-uniqueness in computer vision, J. Math. Analysis and Appl., in press. Zbl0799.35036
- Anna R. Bruss, The eikonal equation: some results applicable to computer vision, J. Math. Phys. (1982), 23(5) 890-896. (1982) MR0655907
- Chabrowski J., Zhang K., On shape from shading problem, Functional Analysis, Approximation Theory and Numerical Analysis, to appear in: Volume 1 dedicated to S. Banach, S. Ulam and A. Ostrowski, World Scientific Publishing, Singapore. Zbl0878.35026MR1298653
- Chabrowski J., Zhang K., On variational approach to photometric stereo, Ann. de l'Institut H. Poincaré, Analyse non linéaire, in press. Zbl0821.49027
- Dacorogna B., Direct methods in the calculus of variations, Applied Mathematical Sciences 78 Springer Verlag, Berlin - Heidelberg (1989). (1989) Zbl0703.49001MR0990890
- Deift P., Sylvester J., Some remarks on the shape-from-shading problem in computer vision, J. Math. Anal. Appl. (1982), 84(1) 235-248. (1982) MR0639534
- Ekeland I., Temam R., Analyse convexe et problèmes variationnels, Dunod Paris (1974). (1974) Zbl0281.49001MR0463993
- Lawrence C. Evans, Weak convergence methods for nonlinear partial differential equations, CBMS Regional Conference Series in Mathematics (74) Amer. Math. Soc. MR1034481
- Kohn R.V., Strang G., Optimal design and relaxation of variational problems, I, (1986), 39 Comm. Pure and Applied Math. 113-137. (1986) Zbl0609.49008MR0820342
- Kozera R., Existence and uniqueness in photometric stereo, Applied Mathematics and Computation (1991), 44(1) 1-103. (1991) Zbl0732.53005MR1110435
- Tartar L., Compensated compactness, Heriot-Watt Symposium (1978), 4. (1978)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.