Page 1 Next

Displaying 1 – 20 of 34

Showing per page

3D-2D asymptotic analysis for micromagnetic thin films

Roberto Alicandro, Chiara Leone (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Γ -convergence techniques and relaxation results of constrained energy functionals are used to identify the limiting energy as the thickness ε approaches zero of a ferromagnetic thin structure Ω ε = ω × ( - ε , ε ) , ω 2 , whose energy is given by ε ( m ¯ ) = 1 ε Ω ε W ( m ¯ , m ¯ ) + 1 2 u ¯ · m ¯ d x subject to div ( - u ¯ + m ¯ χ Ω ε ) = 0 on 3 , and to the constraint | m ¯ | = 1 on Ω ε , where W is any continuous function satisfying p -growth assumptions with p > 1 . Partial results are also obtained in the case p = 1 , under an additional assumption on W .

3D-2D Asymptotic Analysis for Micromagnetic Thin Films

Roberto Alicandro, Chiara Leone (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Γ-convergence techniques and relaxation results of constrained energy functionals are used to identify the limiting energy as the thickness ε approaches zero of a ferromagnetic thin structure Ω ε = ω × ( - ε , ε ) , ω 2 , whose energy is given by ε ( m ¯ ) = 1 ε Ω ε W ( m ¯ , m ¯ ) + 1 2 u ¯ · m ¯ d x subject to div ( - u ¯ + m ¯ χ Ω ε ) = 0 on 3 , and to the constraint | m ¯ | = 1 on Ω ε , where W is any continuous function satisfying p-growth assumptions with p> 1. Partial results are also obtained in the case p=1, under an additional assumption on W.

A general approximation theorem of Whitney type.

Michael Langenbruch (2003)

RACSAM

We show that Whitney?s approximation theorem holds in a general setting including spaces of (ultra)differentiable functions and ultradistributions. This is used to obtain real analytic modifications for differentiable functions including optimal estimates. Finally, a surjectivity criterion for continuous linear operators between Fréchet sheaves is deduced, which can be applied to the boundary value problem for holomorphic functions and to convolution operators in spaces of ultradifferentiable functions...

A-Quasiconvexity: Relaxation and Homogenization

Andrea Braides, Irene Fonseca, Giovanni Leoni (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Integral representation of relaxed energies and of Γ-limits of functionals ( u , v ) Ω f ( x , u ( x ) , v ( x ) ) d x are obtained when sequences of fields v may develop oscillations and are constrained to satisfy a system of first order linear partial differential equations. This framework includes the treatement of divergence-free fields, Maxwell's equations in micromagnetics, and curl-free fields. In the latter case classical relaxation theorems in W1,p, are recovered.

Dimension reduction for functionals on solenoidal vector fields

Stefan Krömer (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study integral functionals constrained to divergence-free vector fields in Lp on a thin domain, under standard p-growth and coercivity assumptions, 1 < p < ∞. We prove that as the thickness of the domain goes to zero, the Gamma-limit with respect to weak convergence in Lp is always given by the associated functional with convexified energy density wherever it is finite. Remarkably, this happens despite the fact that relaxation of nonconvex functionals subject to the limiting constraint...

Dimension reduction for functionals on solenoidal vector fields

Stefan Krömer (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study integral functionals constrained to divergence-free vector fields in Lp on a thin domain, under standard p-growth and coercivity assumptions, 1 < p < ∞. We prove that as the thickness of the domain goes to zero, the Gamma-limit with respect to weak convergence in Lp is always given by the associated functional with convexified energy density wherever it is finite. Remarkably, this happens despite the fact that relaxation of nonconvex functionals subject to the limiting constraint...

Interpolation problems in cones. Nota I

Carlos A. Berenstein, Daniele Struppa (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa nota, si studiano problemi di interpolazione per varietà discrete in spazi di funzioni olomorfe in coni. In particolare si mostra come sia possibile estendere il Principio Fondamentale di Ehrenpreis ad equazioni di convoluzione nella spazio H c ( Ω ) , introdotto in [4] in connessione con problemi di fisica quantistica.

Interpolation problems in cones. Nota II

Carlos A. Berenstein, Daniele Struppa (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si estendono qui i risultati della nota precedente al caso di varietà non discrete. Ciò viene utilizzato per ottenere un teorema di rappresentazione per soluzioni di sistemi di equazioni di convoluzione in spazi di funzioni olomorfe in coni.

On variational approach to the Hamilton-Jacobi PDE

Jan H. Chabrowski, Ke Wei Zhang (1993)

Commentationes Mathematicae Universitatis Carolinae

In this paper we construct a minimizing sequence for the problem (1). In particular, we show that for any subsolution of the Hamilton-Jacobi equation ( * ) there exists a minimizing sequence weakly convergent to this subsolution. The variational problem (1) arises from the theory of computer vision equations.

Ouverts stablement convexes par rapport à un opérateur différentiel

André Unterberger (1972)

Annales de l'institut Fourier

On montre l’équivalence entre certaines inégalités “à la Carleman” et certaines propriétés de régularité des solutions à support compact d’équations aux dérivées partielles à coefficients constants : P ( D ) étant un opérateur différentiel sur R n , on en déduit une caractérisation, en termes d’inégalités L 2 , des ouverts Ω de R n tels que Ω × R k soit P ( D ) -convexe pour tout entier k .

Solution operators for convolution equations on the germs of analytic functions on compact convex sets in N

S. Melikhov, Siegfried Momm (1995)

Studia Mathematica

G N is compact and convex it is known for a long time that the nonzero constant coefficients linear partial differential operators (of finite or infinite order) are surjective on the space of all analytic functions on G. We consider the question whether solutions of the inhomogeneous equation can be given in terms of a continuous linear operator. For instance we characterize those sets G for which this is always the case.

Currently displaying 1 – 20 of 34

Page 1 Next