Non-commutative Gelfand-Naimark theorem

Janusz Migda

Commentationes Mathematicae Universitatis Carolinae (1993)

  • Volume: 34, Issue: 2, page 253-255
  • ISSN: 0010-2628

Abstract

top
We show that if Y is the Hausdorffization of the primitive spectrum of a C * -algebra A then A is * -isomorphic to the C * -algebra of sections vanishing at infinity of the canonical C * -bundle over Y .

How to cite

top

Migda, Janusz. "Non-commutative Gelfand-Naimark theorem." Commentationes Mathematicae Universitatis Carolinae 34.2 (1993): 253-255. <http://eudml.org/doc/247488>.

@article{Migda1993,
abstract = {We show that if Y is the Hausdorffization of the primitive spectrum of a $C^\{\ast \}$-algebra $A$ then $A$ is $\ast $-isomorphic to the $C^\{\ast \}$-algebra of sections vanishing at infinity of the canonical $C^\{\ast \}$-bundle over $Y$.},
author = {Migda, Janusz},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$C^\{\ast \}$-algebra; $C^\{\ast \}$-bundle; sectional representation; -bundle; sectional representation; primitive spectrum of a -algebra},
language = {eng},
number = {2},
pages = {253-255},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Non-commutative Gelfand-Naimark theorem},
url = {http://eudml.org/doc/247488},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Migda, Janusz
TI - Non-commutative Gelfand-Naimark theorem
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 2
SP - 253
EP - 255
AB - We show that if Y is the Hausdorffization of the primitive spectrum of a $C^{\ast }$-algebra $A$ then $A$ is $\ast $-isomorphic to the $C^{\ast }$-algebra of sections vanishing at infinity of the canonical $C^{\ast }$-bundle over $Y$.
LA - eng
KW - $C^{\ast }$-algebra; $C^{\ast }$-bundle; sectional representation; -bundle; sectional representation; primitive spectrum of a -algebra
UR - http://eudml.org/doc/247488
ER -

References

top
  1. Dauns J., Hofmann K.H., Representation of rings by sections, Mem. Amer. Math. Soc. 83 (1968). (1968) Zbl0174.05703MR0247487
  2. Dixmier J., Les C * -algèbres et leurs representations, Gauthier-Villars, Paris, 1969. Zbl0288.46055MR0246136
  3. Dupre M.J., Gillette M.R., Banach bundles, Banach modules and automorphisms of C * - algebras, Research Notes in Math. 92, Pitman Advanced Publishing Program, Boston- London-Melbourne, 1983. Zbl0536.46048MR0721812
  4. Fell J.M.G., The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280. (1961) Zbl0101.09301MR0164248
  5. Fell J.M.G., An extension of Macley’s method to Banach * -algebraic bundles, Mem. Amer. Math. Soc. 90 (1969). (1969) MR0259619
  6. Tomiyama J., Topological representations of C * -algebras, Tohôku Math. J. 14 (1962), 187-204. (1962) MR0143053

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.