Displaying similar documents to “Non-commutative Gelfand-Naimark theorem”

The Group of Invertible Elements of the Algebra of Quaternions

Irina A. Kuzmina, Marie Chodorová (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

We have, that all two-dimensional subspaces of the algebra of quaternions, containing a unit, are 2-dimensional subalgebras isomorphic to the algebra of complex numbers. It was proved in the papers of N. E. Belova. In the present article we consider a 2-dimensional subalgebra ( i ) of complex numbers with basis 1 , i and we construct the principal locally trivial bundle which is isomorphic to the Hopf fibration.

Lifting to the r-frame bundle by means of connections

J. Kurek, W. M. Mikulski (2010)

Annales Polonici Mathematici

Similarity:

Let m and r be natural numbers and let P r : f m be the rth order frame bundle functor. Let F : f m and G : f k be natural bundles, where k = d i m ( P r m ) . We describe all f m -natural operators A transforming sections σ of F M M and classical linear connections ∇ on M into sections A(σ,∇) of G ( P r M ) P r M . We apply this general classification result to many important natural bundles F and G and obtain many particular classifications.

Geometric stability of the cotangent bundle and the universal cover of a projective manifold

Frédéric Campana, Thomas Peternell (2011)

Bulletin de la Société Mathématique de France

Similarity:

We first prove a strengthening of Miyaoka’s generic semi-positivity theorem: the quotients of the tensor powers of the cotangent bundle of a non-uniruled complex projective manifold X have a pseudo-effective (instead of generically nef) determinant. A first consequence is that X is of general type if its cotangent bundle contains a subsheaf with ‘big’ determinant. Among other applications, we deduce that if the universal cover of X is not covered by compact positive-dimensional analytic...

Equivalence bimodule between non-commutative tori

Sei-Qwon Oh, Chun-Gil Park (2003)

Czechoslovak Mathematical Journal

Similarity:

The non-commutative torus C * ( n , ω ) is realized as the C * -algebra of sections of a locally trivial C * -algebra bundle over S ω ^ with fibres isomorphic to C * ( n / S ω , ω 1 ) for a totally skew multiplier ω 1 on n / S ω . D. Poguntke [9] proved that A ω is stably isomorphic to C ( S ω ^ ) C * ( n / S ω , ω 1 ) C ( S ω ^ ) A ϕ M k l ( ) for a simple non-commutative torus A ϕ and an integer k l . It is well-known that a stable isomorphism of two separable C * -algebras is equivalent to the existence of equivalence bimodule between them. We construct an A ω - C ( S ω ^ ) A ϕ -equivalence bimodule.

Linear liftings of affinors to Weil bundles

Jacek Dębecki (2003)

Colloquium Mathematicae

Similarity:

We give a classification of all linear natural operators transforming affinors on each n-dimensional manifold M into affinors on T A M , where T A is the product preserving bundle functor given by a Weil algebra A, under the condition that n ≥ 2.

Constructions on second order connections

J. Kurek, W. M. Mikulski (2007)

Annales Polonici Mathematici

Similarity:

We classify all m , n -natural operators : J ² J ² V A transforming second order connections Γ: Y → J²Y on a fibred manifold Y → M into second order connections ( Γ ) : V A Y J ² V A Y on the vertical Weil bundle V A Y M corresponding to a Weil algebra A.

The natural operators lifting 1-forms to some vector bundle functors

J. Kurek, W. M. Mikulski (2002)

Colloquium Mathematicae

Similarity:

Let F:ℳ f→ ℬ be a vector bundle functor. First we classify all natural operators T | f T ( 0 , 0 ) ( F | f ) * transforming vector fields to functions on the dual bundle functor ( F | f ) * . Next, we study the natural operators T * | f T * ( F | f ) * lifting 1-forms to ( F | f ) * . As an application we classify the natural operators T * | f T * ( F | f ) * for some well known vector bundle functors F.

Liftings of 1-forms to ( J r T * ) *

Włodzimierz M. Mikulski (2002)

Colloquium Mathematicae

Similarity:

Let J r T * M be the r-jet prolongation of the cotangent bundle of an n-dimensional manifold M and let ( J r T * M ) * be the dual vector bundle. For natural numbers r and n, a complete classification of all linear natural operators lifting 1-forms from M to 1-forms on ( J r T * M ) * is given.

On lifting of connections to Weil bundles

Jan Kurek, Włodzimierz M. Mikulski (2012)

Annales Polonici Mathematici

Similarity:

We prove that the problem of finding all f m -natural operators B : Q Q T A lifting classical linear connections ∇ on m-manifolds M to classical linear connections B M ( ) on the Weil bundle T A M corresponding to a p-dimensional (over ℝ) Weil algebra A is equivalent to the one of finding all f m -natural operators C : Q ( T ¹ p - 1 , T * T * T ) transforming classical linear connections ∇ on m-manifolds M into base-preserving fibred maps C M ( ) : T ¹ p - 1 M = M p - 1 T M T * M T * M T M .

The kh-socle of a commutative semisimple Banach algebra

Youness Hadder (2020)

Mathematica Bohemica

Similarity:

Let 𝒜 be a commutative complex semisimple Banach algebra. Denote by kh ( soc ( 𝒜 ) ) the kernel of the hull of the socle of 𝒜 . In this work we give some new characterizations of this ideal in terms of minimal idempotents in 𝒜 . This allows us to show that a “result” from Riesz theory in commutative Banach algebras is not true.