On -sequential -compact spaces
Salvador García-Ferreira; Angel Tamariz-Mascarúa
Commentationes Mathematicae Universitatis Carolinae (1993)
- Volume: 34, Issue: 2, page 347-356
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGarcía-Ferreira, Salvador, and Tamariz-Mascarúa, Angel. "On $p$-sequential $p$-compact spaces." Commentationes Mathematicae Universitatis Carolinae 34.2 (1993): 347-356. <http://eudml.org/doc/247507>.
@article{García1993,
abstract = {It is shown that a space $X$ is $L(\{\}^\{\mu \}p)$-Weakly Fréchet-Urysohn for $p\in \omega ^\{\ast \}$ iff it is $L(\{\}^\{\nu \}p)$-Weakly Fréchet-Urysohn for arbitrary $\mu ,\nu <\omega _1$, where $\{\}^\{\mu \}p$ is the $\mu $-th left power of $p$ and $L(q)=\lbrace \{\}^\{\mu \}q:\mu <\omega _1\rbrace $ for $q\in \omega ^\{\ast \}$. We also prove that for $p$-compact spaces, $p$-sequentiality and the property of being a $L(\{\}^\{\nu \}p)$-Weakly Fréchet-Urysohn space with $\nu <\omega _1$, are equivalent; consequently if $X$ is $p$-compact and $\nu <\omega _1$, then $X$ is $p$-sequential iff $X$ is $\{\}^\{\nu \}p$-sequential (Boldjiev and Malyhin gave, for each $P$-point $p\in \omega ^\{\ast \}$, an example of a compact space $X_p$ which is $^2p$-Fréchet-Urysohn and it is not $p$-Fréchet-Urysohn. The question whether such an example exists in ZFC remains unsolved).},
author = {García-Ferreira, Salvador, Tamariz-Mascarúa, Angel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$p$-compact; $p$-sequential; $\operatorname\{FU\}(p)$-space; Rudin-Keisler order; tensor product of ultrafilters; left power of ultrafilters; $\operatorname\{SMU\}(M)$-space; $\operatorname\{WFU\}(M)$-space; -space; Rudin-Keisler order; tensor product of ultrafilters; left power of ultrafilters; -space; -space; Franklin space; -compact spaces; - sequentiality},
language = {eng},
number = {2},
pages = {347-356},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On $p$-sequential $p$-compact spaces},
url = {http://eudml.org/doc/247507},
volume = {34},
year = {1993},
}
TY - JOUR
AU - García-Ferreira, Salvador
AU - Tamariz-Mascarúa, Angel
TI - On $p$-sequential $p$-compact spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 2
SP - 347
EP - 356
AB - It is shown that a space $X$ is $L({}^{\mu }p)$-Weakly Fréchet-Urysohn for $p\in \omega ^{\ast }$ iff it is $L({}^{\nu }p)$-Weakly Fréchet-Urysohn for arbitrary $\mu ,\nu <\omega _1$, where ${}^{\mu }p$ is the $\mu $-th left power of $p$ and $L(q)=\lbrace {}^{\mu }q:\mu <\omega _1\rbrace $ for $q\in \omega ^{\ast }$. We also prove that for $p$-compact spaces, $p$-sequentiality and the property of being a $L({}^{\nu }p)$-Weakly Fréchet-Urysohn space with $\nu <\omega _1$, are equivalent; consequently if $X$ is $p$-compact and $\nu <\omega _1$, then $X$ is $p$-sequential iff $X$ is ${}^{\nu }p$-sequential (Boldjiev and Malyhin gave, for each $P$-point $p\in \omega ^{\ast }$, an example of a compact space $X_p$ which is $^2p$-Fréchet-Urysohn and it is not $p$-Fréchet-Urysohn. The question whether such an example exists in ZFC remains unsolved).
LA - eng
KW - $p$-compact; $p$-sequential; $\operatorname{FU}(p)$-space; Rudin-Keisler order; tensor product of ultrafilters; left power of ultrafilters; $\operatorname{SMU}(M)$-space; $\operatorname{WFU}(M)$-space; -space; Rudin-Keisler order; tensor product of ultrafilters; left power of ultrafilters; -space; -space; Franklin space; -compact spaces; - sequentiality
UR - http://eudml.org/doc/247507
ER -
References
top- Bernstein A.R., A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193. (1970) Zbl0198.55401MR0251697
- Blass A.R., Kleene degrees of ultrafilters, in: Recursion Theory Weak (OberWolfach, 1984), 29-48, Lecture Notes in Math. 1141, Springer, Berlin-New York, 1985. Zbl0573.03020MR0820773
- Booth D.D., Ultrafilters on a countable set, Ann. Math. Logic 2 (1970), 1-24. (1970) Zbl0231.02067MR0277371
- Boldjiev B., Malyhin V., The sequentiality is equivalent to the -Fréchet-Urysohn property, Comment. Math. Univ. Carolinae 31 (1990), 23-25. (1990) MR1056166
- Comfort W.W., Negrepontis S., The Theory of Ultrafilters, Grundlehren der Mathematichen Wissenschaften, vol. 211, Springer-Verlag, 1974. Zbl0298.02004MR0396267
- Frolík Z., Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91. (1967) MR0203676
- Garcia-Ferreira S., On -spaces and -sequential spaces, Comment. Math. Univ. Carolinae 32 (1991), 161-171. (1991) Zbl0789.54032MR1118299
- Garcia-Ferreira S., Three orderings on , Top. Appl., to appear. Zbl0791.54032MR1227550
- Katětov M., Products of filters, Comment. Math. Univ. Carolinae 9 (1968), 173-189. (1968) MR0250257
- Kočinac L.D., A generalization of chain net spaces, Publ. Inst. Math. (Beograd) 44 (58) (1988), 109-114. (1988) MR0995414
- Kombarov A.P., On a theorem of A.H. Stone, Soviet Math. Dokl. 27 (1983), 544-547. (1983) Zbl0531.54007
- Malyhin V.I., On countable space having no bicompactification of countable tightness, Soviet Math. Dokl. 13 (1972), 1407-1411. (1972) MR0320981
- Vopěnka P., The construction of models of set-theory by the method of ultraproducts, Z. Math. Logik Grundlagen Math. 8 (1962), 293-306. (1962) MR0146085
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.