p -sequential like properties in function spaces

Salvador García-Ferreira; Angel Tamariz-Mascarúa

Commentationes Mathematicae Universitatis Carolinae (1994)

  • Volume: 35, Issue: 4, page 753-771
  • ISSN: 0010-2628

Abstract

top
We introduce the properties of a space to be strictly WFU ( M ) or strictly SFU ( M ) , where M ω * , and we analyze them and other generalizations of p -sequentiality ( p ω * ) in Function Spaces, such as Kombarov’s weakly and strongly M -sequentiality, and Kocinac’s WFU ( M ) and SFU ( M ) -properties. We characterize these in C π ( X ) in terms of cover-properties in X ; and we prove that weak M -sequentiality is equivalent to WFU ( L ( M ) ) -property, where L ( M ) = { λ p : λ < ω 1 and p M } , in the class of spaces which are p -compact for every p M ω * ; and that C π ( X ) is a WFU ( L ( M ) ) -space iff X satisfies the M -version δ M of Gerlitz and Nagy’s property δ . We also prove that if C π ( X ) is a strictly WFU ( M ) -space (resp., WFU ( M ) -space and every RK -predecessor of p M is rapid), then X satisfies C ' ' (resp., X is zero-dimensional), and, if in addition, X , then X has strong measure zero (resp., X has measure zero), and we conclude that C π ( ) is not p -sequential if p ω * is selective. Furthermore, we show: (a) if p ω * is selective, then C π ( X ) is an FU ( p ) -space iff C π ( X ) is a strictly WFU ( T ( p ) ) -space, where T ( p ) is the set of RK -equivalent ultrafilters of p ; and (b) p ω * is semiselective iff the subspace ω { p } of β ω is a strictly WFU ( T ( P ) ) -space. Finally, we study these properties in C π ( Z ) when Z is a topological product of spaces.

How to cite

top

García-Ferreira, Salvador, and Tamariz-Mascarúa, Angel. "$p$-sequential like properties in function spaces." Commentationes Mathematicae Universitatis Carolinae 35.4 (1994): 753-771. <http://eudml.org/doc/247590>.

@article{García1994,
abstract = {We introduce the properties of a space to be strictly $\operatorname\{WFU\}(M)$ or strictly $\operatorname\{SFU\}(M)$, where $\emptyset \ne M\subset \omega ^\{\ast \}$, and we analyze them and other generalizations of $p$-sequentiality ($p\in \omega ^\{\ast \}$) in Function Spaces, such as Kombarov’s weakly and strongly $M$-sequentiality, and Kocinac’s $\operatorname\{WFU\}(M)$ and $\operatorname\{SFU\}(M)$-properties. We characterize these in $C_\pi (X)$ in terms of cover-properties in $X$; and we prove that weak $M$-sequentiality is equivalent to $\operatorname\{WFU\}(L(M))$-property, where $L(M)=\lbrace \{\}^\{\lambda \}p:\lambda <\omega _1$ and $p\in M\rbrace $, in the class of spaces which are $p$-compact for every $p\in M\subset \omega ^\{\ast \}$; and that $C_\pi (X)$ is a $\operatorname\{WFU\}(L(M))$-space iff $X$ satisfies the $M$-version $\delta _M$ of Gerlitz and Nagy’s property $\delta $. We also prove that if $C_\pi (X)$ is a strictly $\operatorname\{WFU\}(M)$-space (resp., $\operatorname\{WFU\}(M)$-space and every $\operatorname\{RK\}$-predecessor of $p\in M$ is rapid), then $X$ satisfies $C^\{\prime \prime \}$ (resp., $X$ is zero-dimensional), and, if in addition, $X\subset \mathbb \{R\}$, then $X$ has strong measure zero (resp., $X$ has measure zero), and we conclude that $C_\pi (\mathbb \{R\})$ is not $p$-sequential if $p\in \omega ^\{\ast \}$ is selective. Furthermore, we show: (a) if $p\in \omega ^\{\ast \}$ is selective, then $C_\pi (X)$ is an $\operatorname\{FU\}(p)$-space iff $C_\pi (X)$ is a strictly $\operatorname\{WFU\}(T(p))$-space, where $T(p)$ is the set of $\operatorname\{RK\}$-equivalent ultrafilters of $p$; and (b) $p\in \omega ^\{\ast \}$ is semiselective iff the subspace $\omega \cup \lbrace p\rbrace $ of $\beta \omega $ is a strictly $\operatorname\{WFU\}(T(P))$-space. Finally, we study these properties in $C_\pi (Z)$ when $Z$ is a topological product of spaces.},
author = {García-Ferreira, Salvador, Tamariz-Mascarúa, Angel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {selective; semiselective and rapid ultrafilter; Rudin-Keisler order; weakly $M$-sequential; strongly $M$-sequential; $\operatorname\{WFU\}(M)$-space; $\operatorname\{SFU\}(M)$-space; strictly $\operatorname\{WFU\}(M)$-space; strictly $\operatorname\{SFU\}(M)$-space; countable strong fan tightness; Id-fan tightness; property $C^\{\prime \prime \}$; measure zero; -sequentiality; weak -sequentiality; selective ultrafilter; semiselective ultrafilter; rapid ultrafilter; Rudin-Keisler order; strictly -space; strictly -space; countable strong fan tightness; Id-fan tightness; strong measure zero},
language = {eng},
number = {4},
pages = {753-771},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$p$-sequential like properties in function spaces},
url = {http://eudml.org/doc/247590},
volume = {35},
year = {1994},
}

TY - JOUR
AU - García-Ferreira, Salvador
AU - Tamariz-Mascarúa, Angel
TI - $p$-sequential like properties in function spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 4
SP - 753
EP - 771
AB - We introduce the properties of a space to be strictly $\operatorname{WFU}(M)$ or strictly $\operatorname{SFU}(M)$, where $\emptyset \ne M\subset \omega ^{\ast }$, and we analyze them and other generalizations of $p$-sequentiality ($p\in \omega ^{\ast }$) in Function Spaces, such as Kombarov’s weakly and strongly $M$-sequentiality, and Kocinac’s $\operatorname{WFU}(M)$ and $\operatorname{SFU}(M)$-properties. We characterize these in $C_\pi (X)$ in terms of cover-properties in $X$; and we prove that weak $M$-sequentiality is equivalent to $\operatorname{WFU}(L(M))$-property, where $L(M)=\lbrace {}^{\lambda }p:\lambda <\omega _1$ and $p\in M\rbrace $, in the class of spaces which are $p$-compact for every $p\in M\subset \omega ^{\ast }$; and that $C_\pi (X)$ is a $\operatorname{WFU}(L(M))$-space iff $X$ satisfies the $M$-version $\delta _M$ of Gerlitz and Nagy’s property $\delta $. We also prove that if $C_\pi (X)$ is a strictly $\operatorname{WFU}(M)$-space (resp., $\operatorname{WFU}(M)$-space and every $\operatorname{RK}$-predecessor of $p\in M$ is rapid), then $X$ satisfies $C^{\prime \prime }$ (resp., $X$ is zero-dimensional), and, if in addition, $X\subset \mathbb {R}$, then $X$ has strong measure zero (resp., $X$ has measure zero), and we conclude that $C_\pi (\mathbb {R})$ is not $p$-sequential if $p\in \omega ^{\ast }$ is selective. Furthermore, we show: (a) if $p\in \omega ^{\ast }$ is selective, then $C_\pi (X)$ is an $\operatorname{FU}(p)$-space iff $C_\pi (X)$ is a strictly $\operatorname{WFU}(T(p))$-space, where $T(p)$ is the set of $\operatorname{RK}$-equivalent ultrafilters of $p$; and (b) $p\in \omega ^{\ast }$ is semiselective iff the subspace $\omega \cup \lbrace p\rbrace $ of $\beta \omega $ is a strictly $\operatorname{WFU}(T(P))$-space. Finally, we study these properties in $C_\pi (Z)$ when $Z$ is a topological product of spaces.
LA - eng
KW - selective; semiselective and rapid ultrafilter; Rudin-Keisler order; weakly $M$-sequential; strongly $M$-sequential; $\operatorname{WFU}(M)$-space; $\operatorname{SFU}(M)$-space; strictly $\operatorname{WFU}(M)$-space; strictly $\operatorname{SFU}(M)$-space; countable strong fan tightness; Id-fan tightness; property $C^{\prime \prime }$; measure zero; -sequentiality; weak -sequentiality; selective ultrafilter; semiselective ultrafilter; rapid ultrafilter; Rudin-Keisler order; strictly -space; strictly -space; countable strong fan tightness; Id-fan tightness; strong measure zero
UR - http://eudml.org/doc/247590
ER -

References

top
  1. Arhangel'skii A.V., The spectrum of frequences of topological spaces and their classification (in Russian), Dokl. Akad. Nauk SSSR 206 (1972), 265-268. (1972) MR0394575
  2. Arhangel'skii A.V., The spectrum of frequences of a topological space and the product operation (in Russian), Trudy Moskov. Mat. Obsc. 40 (1979), 171-266. (1979) MR0550259
  3. Arhangel'skii A.V., Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys 33 (1978), 33-96. (1978) MR0526012
  4. Arhangel'skii A.V., Franklin S.P., Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313-320. (1968) MR0240767
  5. Bernstein A.R., A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193. (1970) Zbl0198.55401MR0251697
  6. Booth D., Ultrafilters on a countable set, Ann. Math. Logic 2 (1970), 1-24. (1970) Zbl0231.02067MR0277371
  7. Comfort W.W., Ultrafilters: some old and some new results, Bull. Amer. Math. Soc. 83 (1977), 417-455. (1977) MR0454893
  8. Comfort W.W., Topological groups, in K. Kunen and J.E. Vaughan, editors, Handbook of Set-Theoretic Topology, North-Holland, 1984. Zbl1071.54019MR0776643
  9. Comfort W.W., Negrepontis S., The Theory of Ultrafilters, Springer Verlag, Berlin-Heidelberg-New York, 1974. Zbl0298.02004MR0396267
  10. Daniels P., Pixley-Roy spaces over subsets of reals, Top. Appl. 29 (1988), 93-106. (1988) MR0944073
  11. Engelking R., General Topology, Sigma Series in Pure Math., vol. 6, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  12. Frolík Z., Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91. (1967) MR0203676
  13. García-Ferreira S., Comfort types of ultrafilters, Proc. Amer. Math. Soc. 120 (1994), 1251-1260. (1994) MR1170543
  14. García-Ferreira S., On F U ( p ) -spaces and p -sequential spaces, Comment. Math. Univ. Carolinae 32 (1991), 161-171. (1991) Zbl0789.54032MR1118299
  15. García-Ferreira S., Tamariz-Mascarúa A., p -Fréchet-Urysohn property of function spaces, to be published in Top. and Appl. 
  16. García-Ferreira S., Tamariz-Mascarúa A., On p -sequential p -compact spaces, Comment. Math. Univ. Carolinae 34 (1993), 347-356. (1993) MR1241743
  17. García-Ferreira S., Tamariz-Mascarúa A., Some generalizations of rapid ultrafilters in topology and Id-fan tightness, to be published in Tsukuba Journal of Math. 
  18. Gerlitz J., Some properties of C ( X ) , II, Topology Appl. 15 (1983), 255-262. (1983) MR0694545
  19. Gerlitz J., Nagy Zs., Products of convergence properties, Comment. Math. Univ. Carolinae 23 (1982), 747-766. (1982) MR0687569
  20. Gerlitz J., Nagy Zs., Some properties of C ( X ) , I, Topology Appl. 14 (1982), 151-161. (1982) MR0667661
  21. Katětov M., Products of filters, Comment. Math. Univ. Carolinae 9 (1968), 173-189. (1968) MR0250257
  22. Kocinac L.D., A generalization of chain-net spaces, Publ. Inst. Math. (Beograd) 44 (58), 1988, pp. 109-114. Zbl0674.54003MR0995414
  23. Kombarov A.P., On a theorem of A.H. Stone, Soviet Math. Dokl. 27 (1983), 544-547. (1983) Zbl0531.54007
  24. Kunen K., Some points in β N , Proc. Cambridge Philos. Soc. 80 (1976), 358-398. (1976) Zbl0345.02047MR0427070
  25. Laflamme C., Forcing with filters and complete combinatorics, Ann. Math. Logic 42 (1989), 125-163. (1989) Zbl0681.03035MR0996504
  26. Malykhin V.I., The sequentiality and Fréchet-Urysohn property with respect to ultrafilters, Acta Univ. Carolinae Math. et Phy. 31 (1990), 65-69. (1990) MR1101417
  27. Malykhin V.I., Shakmatov D.D., Cartesian products of Fréchet topological groups and function spaces, Acta Math. Hung. 60 (1992), 207-215. (1992) MR1177675
  28. McCoy R.A., Ntanty I., Topological Properties of Spaces of Continuous functions, Lecture Notes in Math. 1315, Springer Verlag, 1980. 
  29. Miller A.W., There are no Q -points in Laver’s model for the Borel conjecture, Proc. Amer. Math. Soc. 78 (1980), 103-106. (1980) Zbl0439.03035MR0548093
  30. Nyikos P.J., Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), 793-801. (1981) Zbl0474.22001MR0630057
  31. Pytkeev E.G., On sequentiality of spaces of continuous functions, Russian Math. Surveys 37 (1982), 190-191. (1982) MR0676634
  32. Sakai M., Property C ' ' and function spaces, Proc. Amer. Math. Soc. 104 (1988), 917-919. (1988) Zbl0691.54007MR0964873
  33. Vopěnka P., The construction of models of set theory by the method of ultraproducts, Z. Math. Logik Grundlagen Math. 8 (1962), 293-304. (1962) MR0146085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.