-sequential like properties in function spaces
Salvador García-Ferreira; Angel Tamariz-Mascarúa
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 4, page 753-771
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGarcía-Ferreira, Salvador, and Tamariz-Mascarúa, Angel. "$p$-sequential like properties in function spaces." Commentationes Mathematicae Universitatis Carolinae 35.4 (1994): 753-771. <http://eudml.org/doc/247590>.
@article{García1994,
abstract = {We introduce the properties of a space to be strictly $\operatorname\{WFU\}(M)$ or strictly $\operatorname\{SFU\}(M)$, where $\emptyset \ne M\subset \omega ^\{\ast \}$, and we analyze them and other generalizations of $p$-sequentiality ($p\in \omega ^\{\ast \}$) in Function Spaces, such as Kombarov’s weakly and strongly $M$-sequentiality, and Kocinac’s $\operatorname\{WFU\}(M)$ and $\operatorname\{SFU\}(M)$-properties. We characterize these in $C_\pi (X)$ in terms of cover-properties in $X$; and we prove that weak $M$-sequentiality is equivalent to $\operatorname\{WFU\}(L(M))$-property, where $L(M)=\lbrace \{\}^\{\lambda \}p:\lambda <\omega _1$ and $p\in M\rbrace $, in the class of spaces which are $p$-compact for every $p\in M\subset \omega ^\{\ast \}$; and that $C_\pi (X)$ is a $\operatorname\{WFU\}(L(M))$-space iff $X$ satisfies the $M$-version $\delta _M$ of Gerlitz and Nagy’s property $\delta $. We also prove that if $C_\pi (X)$ is a strictly $\operatorname\{WFU\}(M)$-space (resp., $\operatorname\{WFU\}(M)$-space and every $\operatorname\{RK\}$-predecessor of $p\in M$ is rapid), then $X$ satisfies $C^\{\prime \prime \}$ (resp., $X$ is zero-dimensional), and, if in addition, $X\subset \mathbb \{R\}$, then $X$ has strong measure zero (resp., $X$ has measure zero), and we conclude that $C_\pi (\mathbb \{R\})$ is not $p$-sequential if $p\in \omega ^\{\ast \}$ is selective. Furthermore, we show: (a) if $p\in \omega ^\{\ast \}$ is selective, then $C_\pi (X)$ is an $\operatorname\{FU\}(p)$-space iff $C_\pi (X)$ is a strictly $\operatorname\{WFU\}(T(p))$-space, where $T(p)$ is the set of $\operatorname\{RK\}$-equivalent ultrafilters of $p$; and (b) $p\in \omega ^\{\ast \}$ is semiselective iff the subspace $\omega \cup \lbrace p\rbrace $ of $\beta \omega $ is a strictly $\operatorname\{WFU\}(T(P))$-space. Finally, we study these properties in $C_\pi (Z)$ when $Z$ is a topological product of spaces.},
author = {García-Ferreira, Salvador, Tamariz-Mascarúa, Angel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {selective; semiselective and rapid ultrafilter; Rudin-Keisler order; weakly $M$-sequential; strongly $M$-sequential; $\operatorname\{WFU\}(M)$-space; $\operatorname\{SFU\}(M)$-space; strictly $\operatorname\{WFU\}(M)$-space; strictly $\operatorname\{SFU\}(M)$-space; countable strong fan tightness; Id-fan tightness; property $C^\{\prime \prime \}$; measure zero; -sequentiality; weak -sequentiality; selective ultrafilter; semiselective ultrafilter; rapid ultrafilter; Rudin-Keisler order; strictly -space; strictly -space; countable strong fan tightness; Id-fan tightness; strong measure zero},
language = {eng},
number = {4},
pages = {753-771},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$p$-sequential like properties in function spaces},
url = {http://eudml.org/doc/247590},
volume = {35},
year = {1994},
}
TY - JOUR
AU - García-Ferreira, Salvador
AU - Tamariz-Mascarúa, Angel
TI - $p$-sequential like properties in function spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 4
SP - 753
EP - 771
AB - We introduce the properties of a space to be strictly $\operatorname{WFU}(M)$ or strictly $\operatorname{SFU}(M)$, where $\emptyset \ne M\subset \omega ^{\ast }$, and we analyze them and other generalizations of $p$-sequentiality ($p\in \omega ^{\ast }$) in Function Spaces, such as Kombarov’s weakly and strongly $M$-sequentiality, and Kocinac’s $\operatorname{WFU}(M)$ and $\operatorname{SFU}(M)$-properties. We characterize these in $C_\pi (X)$ in terms of cover-properties in $X$; and we prove that weak $M$-sequentiality is equivalent to $\operatorname{WFU}(L(M))$-property, where $L(M)=\lbrace {}^{\lambda }p:\lambda <\omega _1$ and $p\in M\rbrace $, in the class of spaces which are $p$-compact for every $p\in M\subset \omega ^{\ast }$; and that $C_\pi (X)$ is a $\operatorname{WFU}(L(M))$-space iff $X$ satisfies the $M$-version $\delta _M$ of Gerlitz and Nagy’s property $\delta $. We also prove that if $C_\pi (X)$ is a strictly $\operatorname{WFU}(M)$-space (resp., $\operatorname{WFU}(M)$-space and every $\operatorname{RK}$-predecessor of $p\in M$ is rapid), then $X$ satisfies $C^{\prime \prime }$ (resp., $X$ is zero-dimensional), and, if in addition, $X\subset \mathbb {R}$, then $X$ has strong measure zero (resp., $X$ has measure zero), and we conclude that $C_\pi (\mathbb {R})$ is not $p$-sequential if $p\in \omega ^{\ast }$ is selective. Furthermore, we show: (a) if $p\in \omega ^{\ast }$ is selective, then $C_\pi (X)$ is an $\operatorname{FU}(p)$-space iff $C_\pi (X)$ is a strictly $\operatorname{WFU}(T(p))$-space, where $T(p)$ is the set of $\operatorname{RK}$-equivalent ultrafilters of $p$; and (b) $p\in \omega ^{\ast }$ is semiselective iff the subspace $\omega \cup \lbrace p\rbrace $ of $\beta \omega $ is a strictly $\operatorname{WFU}(T(P))$-space. Finally, we study these properties in $C_\pi (Z)$ when $Z$ is a topological product of spaces.
LA - eng
KW - selective; semiselective and rapid ultrafilter; Rudin-Keisler order; weakly $M$-sequential; strongly $M$-sequential; $\operatorname{WFU}(M)$-space; $\operatorname{SFU}(M)$-space; strictly $\operatorname{WFU}(M)$-space; strictly $\operatorname{SFU}(M)$-space; countable strong fan tightness; Id-fan tightness; property $C^{\prime \prime }$; measure zero; -sequentiality; weak -sequentiality; selective ultrafilter; semiselective ultrafilter; rapid ultrafilter; Rudin-Keisler order; strictly -space; strictly -space; countable strong fan tightness; Id-fan tightness; strong measure zero
UR - http://eudml.org/doc/247590
ER -
References
top- Arhangel'skii A.V., The spectrum of frequences of topological spaces and their classification (in Russian), Dokl. Akad. Nauk SSSR 206 (1972), 265-268. (1972) MR0394575
- Arhangel'skii A.V., The spectrum of frequences of a topological space and the product operation (in Russian), Trudy Moskov. Mat. Obsc. 40 (1979), 171-266. (1979) MR0550259
- Arhangel'skii A.V., Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys 33 (1978), 33-96. (1978) MR0526012
- Arhangel'skii A.V., Franklin S.P., Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313-320. (1968) MR0240767
- Bernstein A.R., A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193. (1970) Zbl0198.55401MR0251697
- Booth D., Ultrafilters on a countable set, Ann. Math. Logic 2 (1970), 1-24. (1970) Zbl0231.02067MR0277371
- Comfort W.W., Ultrafilters: some old and some new results, Bull. Amer. Math. Soc. 83 (1977), 417-455. (1977) MR0454893
- Comfort W.W., Topological groups, in K. Kunen and J.E. Vaughan, editors, Handbook of Set-Theoretic Topology, North-Holland, 1984. Zbl1071.54019MR0776643
- Comfort W.W., Negrepontis S., The Theory of Ultrafilters, Springer Verlag, Berlin-Heidelberg-New York, 1974. Zbl0298.02004MR0396267
- Daniels P., Pixley-Roy spaces over subsets of reals, Top. Appl. 29 (1988), 93-106. (1988) MR0944073
- Engelking R., General Topology, Sigma Series in Pure Math., vol. 6, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Frolík Z., Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91. (1967) MR0203676
- García-Ferreira S., Comfort types of ultrafilters, Proc. Amer. Math. Soc. 120 (1994), 1251-1260. (1994) MR1170543
- García-Ferreira S., On -spaces and -sequential spaces, Comment. Math. Univ. Carolinae 32 (1991), 161-171. (1991) Zbl0789.54032MR1118299
- García-Ferreira S., Tamariz-Mascarúa A., -Fréchet-Urysohn property of function spaces, to be published in Top. and Appl.
- García-Ferreira S., Tamariz-Mascarúa A., On -sequential -compact spaces, Comment. Math. Univ. Carolinae 34 (1993), 347-356. (1993) MR1241743
- García-Ferreira S., Tamariz-Mascarúa A., Some generalizations of rapid ultrafilters in topology and Id-fan tightness, to be published in Tsukuba Journal of Math.
- Gerlitz J., Some properties of , II, Topology Appl. 15 (1983), 255-262. (1983) MR0694545
- Gerlitz J., Nagy Zs., Products of convergence properties, Comment. Math. Univ. Carolinae 23 (1982), 747-766. (1982) MR0687569
- Gerlitz J., Nagy Zs., Some properties of , I, Topology Appl. 14 (1982), 151-161. (1982) MR0667661
- Katětov M., Products of filters, Comment. Math. Univ. Carolinae 9 (1968), 173-189. (1968) MR0250257
- Kocinac L.D., A generalization of chain-net spaces, Publ. Inst. Math. (Beograd) 44 (58), 1988, pp. 109-114. Zbl0674.54003MR0995414
- Kombarov A.P., On a theorem of A.H. Stone, Soviet Math. Dokl. 27 (1983), 544-547. (1983) Zbl0531.54007
- Kunen K., Some points in , Proc. Cambridge Philos. Soc. 80 (1976), 358-398. (1976) Zbl0345.02047MR0427070
- Laflamme C., Forcing with filters and complete combinatorics, Ann. Math. Logic 42 (1989), 125-163. (1989) Zbl0681.03035MR0996504
- Malykhin V.I., The sequentiality and Fréchet-Urysohn property with respect to ultrafilters, Acta Univ. Carolinae Math. et Phy. 31 (1990), 65-69. (1990) MR1101417
- Malykhin V.I., Shakmatov D.D., Cartesian products of Fréchet topological groups and function spaces, Acta Math. Hung. 60 (1992), 207-215. (1992) MR1177675
- McCoy R.A., Ntanty I., Topological Properties of Spaces of Continuous functions, Lecture Notes in Math. 1315, Springer Verlag, 1980.
- Miller A.W., There are no -points in Laver’s model for the Borel conjecture, Proc. Amer. Math. Soc. 78 (1980), 103-106. (1980) Zbl0439.03035MR0548093
- Nyikos P.J., Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), 793-801. (1981) Zbl0474.22001MR0630057
- Pytkeev E.G., On sequentiality of spaces of continuous functions, Russian Math. Surveys 37 (1982), 190-191. (1982) MR0676634
- Sakai M., Property and function spaces, Proc. Amer. Math. Soc. 104 (1988), 917-919. (1988) Zbl0691.54007MR0964873
- Vopěnka P., The construction of models of set theory by the method of ultraproducts, Z. Math. Logik Grundlagen Math. 8 (1962), 293-304. (1962) MR0146085
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.