On zeros and fixed points of multifunctions with non-compact convex domains

Sehie Park; Jong Sook Bae

Commentationes Mathematicae Universitatis Carolinae (1993)

  • Volume: 34, Issue: 2, page 257-264
  • ISSN: 0010-2628

Abstract

top
Using our own generalization [7] of J.C. Bellenger’s theorem [1] on the existence of maximizable u.s.cq̇uasiconcave functions on convex spaces, we obtain extended versions of the existence theorem of H. Ben-El-Mechaiekh [2] on zeros for multifunctions with non-compact domains, the coincidence theorem of S.H. Kum [5] for upper hemicontinuous multifunctions, and the Ky Fan type fixed point theorems due to E. Tarafdar [13].

How to cite

top

Park, Sehie, and Bae, Jong Sook. "On zeros and fixed points of multifunctions with non-compact convex domains." Commentationes Mathematicae Universitatis Carolinae 34.2 (1993): 257-264. <http://eudml.org/doc/247514>.

@article{Park1993,
abstract = {Using our own generalization [7] of J.C. Bellenger’s theorem [1] on the existence of maximizable u.s.cq̇uasiconcave functions on convex spaces, we obtain extended versions of the existence theorem of H. Ben-El-Mechaiekh [2] on zeros for multifunctions with non-compact domains, the coincidence theorem of S.H. Kum [5] for upper hemicontinuous multifunctions, and the Ky Fan type fixed point theorems due to E. Tarafdar [13].},
author = {Park, Sehie, Bae, Jong Sook},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {convex space; $c$-compact set; real Hausdorff topological vector space (t.v.s.); linear operator; locally convex; fixed point; coincidence; zero; upper hemicontinuous (u.h.c.) multifunction; coincidence; existence of maximizable u.s.c. quasiconcave functions on convex spaces; zeros for multifunctions with non-compact domains; upper hemicontinuous multifunctions; Ky Fan type fixed point theorems},
language = {eng},
number = {2},
pages = {257-264},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On zeros and fixed points of multifunctions with non-compact convex domains},
url = {http://eudml.org/doc/247514},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Park, Sehie
AU - Bae, Jong Sook
TI - On zeros and fixed points of multifunctions with non-compact convex domains
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 2
SP - 257
EP - 264
AB - Using our own generalization [7] of J.C. Bellenger’s theorem [1] on the existence of maximizable u.s.cq̇uasiconcave functions on convex spaces, we obtain extended versions of the existence theorem of H. Ben-El-Mechaiekh [2] on zeros for multifunctions with non-compact domains, the coincidence theorem of S.H. Kum [5] for upper hemicontinuous multifunctions, and the Ky Fan type fixed point theorems due to E. Tarafdar [13].
LA - eng
KW - convex space; $c$-compact set; real Hausdorff topological vector space (t.v.s.); linear operator; locally convex; fixed point; coincidence; zero; upper hemicontinuous (u.h.c.) multifunction; coincidence; existence of maximizable u.s.c. quasiconcave functions on convex spaces; zeros for multifunctions with non-compact domains; upper hemicontinuous multifunctions; Ky Fan type fixed point theorems
UR - http://eudml.org/doc/247514
ER -

References

top
  1. Bellenger J.C., Existence of maximizable quasiconcave functions on paracompact convex spaces, J. Math. Anal. Appl. 123 (1987), 333-338. (1987) Zbl0649.46006MR0883692
  2. Ben-El-Mechaiekh H., Zeros for set-valued maps with non-compact domains, C. R. Math. Rep. Acad. Sci. Canada 12 (1990), 125-130. (1990) Zbl0734.47028MR1070423
  3. Ky Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984), 519-537. (1984) Zbl0515.47029MR0735533
  4. Jiang J., Fixed point theorems for paracompact convex sets, Acta Math. Sinica 4 (1988), 64-71. (1988) Zbl0715.54032MR0953351
  5. Kum S.H., Ph.D. Dissertation, Seoul National University, 1991, . 
  6. Lassonde M., On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97 (1983), 151-201. (1983) Zbl0527.47037MR0721236
  7. Park S., Bae J.S., Existence of maximizable quasiconcave functions on convex spaces, J. Korean Math. Soc. 28 (1991), 285-292. (1991) Zbl0756.47050MR1127833
  8. Park S., Applications of maximizable linear functionals on convex sets, ``Proc. in Honor of C. N. Lee'', 537-548, 1991. 
  9. Park S., Fixed point theory of multifunctions in topological vector spaces, J. Korean Math. Soc. 29 (1992), 191-208. (1992) Zbl0758.47048MR1157308
  10. Park S., Generalized matching theorems for closed coverings of convex sets, Numer. Funct. Anal. and Optimiz. 11 (1990), 101-110. (1990) Zbl0706.52001MR1058779
  11. Shih M.-H., Tan K.-K., Covering theorems of convex sets related to fixed-point theorem, in ``Nonlinear and Convex Analysis (Proc. in Honor of Ky Fan)'' (B.-L. Lin and S. Simons, eds.), 235-244, Marcel Dekker, Inc., New York, 1987. MR0892795
  12. Simons S., On existence theorem for quasiconcave functions with applications, Nonlinear Anal. TMA 10 (1986), 1133-1152. (1986) MR0857745
  13. Tarafdar E., An extension of Fan's fixed point theorem and equilibrium point of an abstract economy, Comment. Math. Univ. Carolinae 31 (1990), 723-730. (1990) Zbl0745.47046MR1091369

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.