Coincidence points and maximal elements of multifunctions on convex spaces

Sehie Park

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 1, page 57-67
  • ISSN: 0010-2628

Abstract

top
Generalized and unified versions of coincidence or maximal element theorems of Fan, Yannelis and Prabhakar, Ha, Sessa, Tarafdar, Rim and Kim, Mehta and Sessa, Kim and Tan are obtained. Our arguments are based on our recent works on a broad class of multifunctions containing composites of acyclic maps defined on convex subsets of Hausdorff topological vector spaces.

How to cite

top

Park, Sehie. "Coincidence points and maximal elements of multifunctions on convex spaces." Commentationes Mathematicae Universitatis Carolinae 36.1 (1995): 57-67. <http://eudml.org/doc/247738>.

@article{Park1995,
abstract = {Generalized and unified versions of coincidence or maximal element theorems of Fan, Yannelis and Prabhakar, Ha, Sessa, Tarafdar, Rim and Kim, Mehta and Sessa, Kim and Tan are obtained. Our arguments are based on our recent works on a broad class of multifunctions containing composites of acyclic maps defined on convex subsets of Hausdorff topological vector spaces.},
author = {Park, Sehie},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {convex space; polytope; multifunction (map); upper semicontinuous (u.s.c.); lower semicontinuous (l.s.c.); compact map; acyclic; Kakutani map; acyclic map; admissible class; almost $p$-affine; almost $p$-quasiconvex; maximal element; convex space; polytope; upper semicontinuous; lower semicontinuous; Kakutani map; admissible class; almost -affine; almost - quasiconvex; maximal element; maximal element theorems; multifunctions containing composites of acyclic maps},
language = {eng},
number = {1},
pages = {57-67},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Coincidence points and maximal elements of multifunctions on convex spaces},
url = {http://eudml.org/doc/247738},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Park, Sehie
TI - Coincidence points and maximal elements of multifunctions on convex spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 1
SP - 57
EP - 67
AB - Generalized and unified versions of coincidence or maximal element theorems of Fan, Yannelis and Prabhakar, Ha, Sessa, Tarafdar, Rim and Kim, Mehta and Sessa, Kim and Tan are obtained. Our arguments are based on our recent works on a broad class of multifunctions containing composites of acyclic maps defined on convex subsets of Hausdorff topological vector spaces.
LA - eng
KW - convex space; polytope; multifunction (map); upper semicontinuous (u.s.c.); lower semicontinuous (l.s.c.); compact map; acyclic; Kakutani map; acyclic map; admissible class; almost $p$-affine; almost $p$-quasiconvex; maximal element; convex space; polytope; upper semicontinuous; lower semicontinuous; Kakutani map; admissible class; almost -affine; almost - quasiconvex; maximal element; maximal element theorems; multifunctions containing composites of acyclic maps
UR - http://eudml.org/doc/247738
ER -

References

top
  1. Ben-El-Mechaiekh H., The coincidence problem for compositions of set-valued maps, Bull. Austral. Math. Soc. 41 (1990), 421-434. (1990) Zbl0727.54019MR1071044
  2. Ben-El-Mechaiekh H., Deguire P., Approximation of non-convex set-valued maps, C. R. Acad. Sci. Paris 312 (1991), 379-384. (1991) Zbl0719.54053MR1096616
  3. Ben-El-Mechaiekh H., Deguire P., General fixed point theorems for non-convex set-valued maps, C. R. Acad. Sci. Paris 312 (1991), 433-438. (1991) Zbl0795.47036MR1096627
  4. Ben-El-Mechaiekh H., Deguire P., Approachability and fixed points for non-convex set-valued maps, J. Math. Anal. Appl. 170 (1992), 477-500. (1992) Zbl0762.54033MR1188567
  5. Ben-El-Mechaiekh H., Deguire P., Granas A., Points fixes et coincidences pour les fonctions multivoques, II (Applications de type ϕ et ϕ * ), C. R. Acad. Sci. Paris 295 (1982), 381-384. (1982) MR0684731
  6. Bohnenblust H.F., Karlin S., On a theorem of Ville, in ``Contributions to the Theory of Games," Ann. of Math. Studies, No.24, pp.155-160, Princeton Univ. Press, 1950. Zbl0041.25701MR0041415
  7. Brouwer L.E.J., Über Abbildungen von Mannigfaltigkeiten, Math. Ann. 71 (1912), 97-115. (1912) MR1511644
  8. Dzedzej Z., Fixed point index theory for a class of nonacyclic multivalued maps, Dissertationes Math. 253 (1985), 53pp. (1985) Zbl0592.55001MR0839694
  9. Ky Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. (1952) Zbl0047.35103MR0047317
  10. Ky Fan, A generalization of Tychonoff's fixed point theorems, Math. Ann. 142 (1961), 305-310. (1961) MR0131268
  11. Ky Fan, Sur un théorème minimax, C. R. Acad. Sci. Paris 259 (1964), 3925-3928. (1964) Zbl0138.37304MR0174955
  12. Glicksberg I.L., A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174. (1952) Zbl0163.38301MR0046638
  13. Górniewicz L., Homological methods in fixed point theory of multivalued maps, Dissertationes Math. 129 (1976), 71pp. (1976) MR0394637
  14. Granas A., Liu F.-C., Coincidences for set-valued maps and minimax inequalities, J. Math. Pures et Appl. 65 (1986), 119-148. (1986) Zbl0659.49007MR0867668
  15. Ha C.-W., Extensions of two fixed point theorems of Ky Fan, Math. Z. 190 (1985), 13-16. (1985) Zbl0551.47024MR0793344
  16. Himmelberg C.J., Fixed points of compact multifunctions, J. Math. Anal. Appl. 38 (1972), 205-207. (1972) Zbl0225.54049MR0303368
  17. Kakutani S., A generalization of Brouwer's fixed-point theorem, Duke Math. J. 8 (1941), 457-459. (1941) Zbl0061.40304MR0004776
  18. Kim W.K., Existence of maximal elements and equilibrium for a non-paracompact N -person game, Proc. Amer. Math. Soc. 116 (1992), 797-807. (1992) MR1123657
  19. Kim W.K., Tan K.-K., A variational inequality in non-compact sets and its applications, Bull. Austral. Math. Soc. 46 (1992), 139-148. (1992) Zbl0747.47037MR1170448
  20. Knaster B., Kuratowski C., Mazurkiewicz S., Ein Beweis des Fixpunktsatzes für n -dimensionale Simplexe, Fund. Math. 14 (1929), 132-137. (1929) 
  21. Lessonde M., Réduction du cas multivoque au cas univoque dans les problèmes de coïncidence, in ``Fixed Point Theory and Applications'' (M.A. Théra and J.-B. Baillon, Eds.), pp.293-302, Longman Scientific & Technical, Essex, 1991. MR1122836
  22. Levine N., A decomposition of continuity in topological spaces, Amer. Math. Monthly 68 (1961), 44-46. (1961) Zbl0100.18601MR0126252
  23. Mehta G., Fixed points, equilibria and maximal elements in linear topological spaces, Comment. Math. Univ. Carolinae 28 (1987), 377-385. (1987) Zbl0632.47041MR0904761
  24. Mehta G., Weakly lower demicontinuous preference maps, Economics Letters 23 (1987), 15-18. (1987) MR0895251
  25. Mehta G., Sessa S., Coincidence theorems and maximal elements in topological vector spaces, Math. Japonica 37 (1992), 839-845. (1992) Zbl0763.47034MR1186550
  26. Michael E., A selection theorem, Proc. Amer. Math. Soc. 17 (1966), 1404-1406. (1966) Zbl0178.25902MR0203702
  27. Park Sehie, Fixed point theory of multifunctions in topological vector spaces, J. Korean Math. Soc. 29 (1992), 191-208. (1992) Zbl0758.47048MR1157308
  28. Park Sehie, Fixed point theory of multifunctions in topological vector spaces II, J. Korean Math. Soc. 30 (1993), 413-431. (1993) Zbl0797.47029MR1239332
  29. Park Sehie, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994), 493-519. (1994) Zbl0829.49002MR1297433
  30. Park Sehie, Fixed points of acyclic maps on topological vector spaces, Proc. 1st World Congress of Nonlinear Analysts. Zbl0863.47042
  31. Park S., Bae J.S., On zeros and fixed points of multifunctions with non-compact convex domains, Comment. Math. Univ. Carolinae 34 (1993), 257-264. (1993) MR1241735
  32. Park S., Singh S.P., Watson B., Some fixed point theorems for composites of acyclic maps, Proc. Amer. Math. Soc. 121 (1994), 1151-1158. (1994) Zbl0806.47053MR1189547
  33. Rim D.I., Kim W.K., A fixed point theorem and existence of equilibrium for abstract economies, Bull. Austral. Math. Soc. 45 (1992), 385-394. (1992) Zbl0745.90015MR1165145
  34. Schauder J., Zur Theorie stetiger Abbildungen in Funktionalräumen, Math. Z. 26 (1927), 47-65. (1927) MR1544841
  35. Schauder J., Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), 171-180. (1930) 
  36. Sessa S., Some remarks and applications of an extension of a lemma of Ky Fan, Comment. Math. Univ. Carolinae 29 (1988), 567-575. (1988) Zbl0674.47041MR0972839
  37. Tarafdar E., An extension of Fan's fixed point theorem and equilibrium point of an abstract economy, Comment. Math. Univ. Carolinae 31 (1990), 723-730. (1990) Zbl0745.47046MR1091369
  38. Tychonoff A., Ein Fixpunktsatz, Math. Ann. 111 (1935), 767-776. (1935) Zbl0012.30803MR1513031
  39. Yannelis N.C., Prabhakar N., Existence of maximal elements and equilibria in linear topological spaces, J. Math. Economics 12 (1983), 233-245. (1983) Zbl0536.90019MR0743037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.