Global in time solvability of the initial boundary value problem for some nonlinear dissipative evolution equations

Yoshihiro Shibata

Commentationes Mathematicae Universitatis Carolinae (1993)

  • Volume: 34, Issue: 2, page 295-312
  • ISSN: 0010-2628

Abstract

top
The global in time solvability of the one-dimensional nonlinear equations of thermoelasticity, equations of viscoelasticity and nonlinear wave equations in several space dimensions with some boundary dissipation is discussed. The blow up of the solutions which might be possible even for small data is excluded by allowing for a certain dissipative mechanism.

How to cite

top

Shibata, Yoshihiro. "Global in time solvability of the initial boundary value problem for some nonlinear dissipative evolution equations." Commentationes Mathematicae Universitatis Carolinae 34.2 (1993): 295-312. <http://eudml.org/doc/247526>.

@article{Shibata1993,
abstract = {The global in time solvability of the one-dimensional nonlinear equations of thermoelasticity, equations of viscoelasticity and nonlinear wave equations in several space dimensions with some boundary dissipation is discussed. The blow up of the solutions which might be possible even for small data is excluded by allowing for a certain dissipative mechanism.},
author = {Shibata, Yoshihiro},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonlinear thermoelasticity; viscoelasticity; nonlinear wave equation; global solutions; global in time solvability; thermoelasticity; viscoelasticity; nonlinear wave equations; blow up},
language = {eng},
number = {2},
pages = {295-312},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Global in time solvability of the initial boundary value problem for some nonlinear dissipative evolution equations},
url = {http://eudml.org/doc/247526},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Shibata, Yoshihiro
TI - Global in time solvability of the initial boundary value problem for some nonlinear dissipative evolution equations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 2
SP - 295
EP - 312
AB - The global in time solvability of the one-dimensional nonlinear equations of thermoelasticity, equations of viscoelasticity and nonlinear wave equations in several space dimensions with some boundary dissipation is discussed. The blow up of the solutions which might be possible even for small data is excluded by allowing for a certain dissipative mechanism.
LA - eng
KW - nonlinear thermoelasticity; viscoelasticity; nonlinear wave equation; global solutions; global in time solvability; thermoelasticity; viscoelasticity; nonlinear wave equations; blow up
UR - http://eudml.org/doc/247526
ER -

References

top
  1. Agmon S., On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Commun. Pure Appl. Math. 15 (1962), 119-147. (1962) Zbl0109.32701MR0147774
  2. Agmon S., Douglis A., Nirenberg L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Commun. Pure Appl. Math. 12 (1959), 623-727; II, ibid. 17 (1964), 35-92. (1959) Zbl0093.10401MR0125307
  3. Andrews G., On the existence of solutions to the equation: u t t = u x x t + σ ( u x ) x , J. Diff. Eqns. 35 (1980), 200-231. (1980) Zbl0415.35018MR0561978
  4. Andrews G., Ball J.M., Asymptotic behaviour and changes in phase in one-dimensional nonlinear viscoelasticity, J. Diff. Eqns. 44 (1982), 306-341. (1982) MR0657784
  5. Ang D.D., Dinh A.P.N., On the strongly damped wave equation: u t t - Δ u - Δ u t + f ( u ) = 0 , SIAM J. Math. Anal. 19 (1988), 1409-1418. (1988) MR0965260
  6. Aviles P., Sandefur J., Nonlinear second order equations with applications to partial differential equations, J. Diff. Eqns. 58 (1985), 404-427. (1985) Zbl0572.34004MR0797319
  7. Bardos C., Lebeau G., Rauch J, Contrôle et stabilisation dans les problèmes hyperboliques, Appendix II in J.L. Lions Contrôlabilité exacte, perturbations et stabilisation de systémes distribués, I, Contrôlabilité exacte Masson, RMA 8, 1988. MR0953547
  8. Bardos C., Lebeau G., Rauch J, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, submitted to SIAM. J. Cont. Optim. Zbl0786.93009
  9. Chen G., Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. pures et appl. 58 (1976), 249-273. (1976) MR0544253
  10. Chrzȩszczyk A., Some existence results in dynamical thermoelasticity. Part I. Nonlinear Case, Arch. Mech. 39 (1987), 605-617. (1987) MR0976929
  11. Cleménts J., Existence theorems for a quasilinear evolution equation, SIAM J. Appl. Math. 26 (1974), 745-752. (1974) MR0372426
  12. Cleménts J., On the existence and uniqueness of solutions of the equation u t t - ( / x i ) σ i ( u x i ) - Δ N u t = f , Canad. Math. Bull. 18 (1975), 181-187. (1975) MR0397200
  13. Dafermos C.M., On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal. 29 (1968), 241-271. (1968) Zbl0183.37701MR0233539
  14. Dafermos C.M., The mixed initial-boundary value problem for the equations of non-linear one-dimensional visco-elasticity, J. Diff. Eqns. 6 (l969), 71-86. (l969) MR0241831
  15. Dafermos C.M., Hsiao L., Development of singularities in solutions of the equations of nonlinear thermoelasticity, Quart. Appl. Math. 44 (1986), 463-474. (1986) Zbl0661.35009MR0860899
  16. Dan W., On a local in time solvability of the Neumann problem of quasilinear hyperbolic parabolic coupled systems, preprint, 1992. Zbl0841.35003MR1357364
  17. Dassios G., Grillakis M., Dissipation rates and partition of energy in thermoelasticity, Arch. Rational Mech. Anal. 87 (1984), 49-91. (1984) Zbl0563.73007MR0760319
  18. Ebihara Y., On some nonlinear evolution equations with the strong dissipation, J. Diff. Eqns. 30 (1978), 149-164 II ibid. 34 (1979), 339-352 III ibid. 45 (1982), 332-355. (1982) MR0513267
  19. Ebihara Y., Some evolution equations with the quasi-linear strong dissipation, J. Math. pures et appl. 58 (1987), 229-245. (1987) MR0539221
  20. Engler H., Strong solutions for strongly damped quasilinear wave equations, Contemporary Math. 64 (1987), 219-237. (1987) Zbl0638.35054MR0881465
  21. Feireisl E., Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem, Comment. Math. Univ. Carolinae 31 (1990), 243-255. (1990) Zbl0718.73013MR1077895
  22. Friedman A., Nečas J., Systems of nonlinear wave equations with nonlinear viscosity, Pacific J. Math. 135 (1988), 29-55. (1988) MR0965683
  23. Greenberg J.M., On the existence, uniqueness, and stability of the equation ρ 0 X t t = E ( X x ) X x x + X x x t , J. Math. Anal. Appl. 25 (1969), 575-591. (1969) MR0240473
  24. Greenberg J.M., Li Ta-tsien, The effect of boundary damping for the quasilinear wave equation, J. Diff. Eqns. 52 (1984), 66-75. (1984) MR0737964
  25. Greenberg J.M., MacCamy R.C., Mizel J.J., On the existence, uniqueness, and stability of the equation σ ' ( u x ) u x x - λ u x x t = ρ 0 u t t , J. Math. Mech. 17 (1968), 707-728. (1968) 
  26. Godin P., Private communication in 1992, . 
  27. Hrusa W.J., Messaoudi S.A., On formation of singularities in one-dimensional nonlinear thermoelasticity, Arch. Rational Mech. Anal. 111 (1990), 135-151. (1990) Zbl0712.73023MR1057652
  28. Hrusa W.J., Tarabek M.A., On smooth solutions of the Cauchy problem in one-dimensional nonlinear thermoelasticity, Quart. Appl. Math. 47 (1989), 631-644. (1989) Zbl0692.73005MR1031681
  29. Jiang S., Global existence of smooth solutions in one- dimensional nonlinear thermoelasticity, Proc. Roy. Soc. Edinburgh 115A (1990), 257-274. (1990) Zbl0723.35044MR1069521
  30. Jiang S., Far field behavior of solutions to the equations of nonlinear 1-d-thermoelasticity, Appl. Anal. 36 (1990), 25-35. (1990) Zbl0672.35011MR1040876
  31. Jiang S., Rapidly decreasing behaviour of solutions in nonlinear 3-D-thermo-elasticity, Bull. Austral. Math. Soc. 43 (1991), 89-99. (1991) MR1086721
  32. Jiang S., Global solutions of the Dirichlet problem in one-dimensional nonlinear thermoelasticity, SFB 256 Preprint 138, Universität Bonn, 1990. 
  33. Jiang S., Global solutions of the Neumann problem in one-dimensional nonlinear thermoelasticity, to appear in Nonlinear TMA. Zbl0786.73009MR1174462
  34. Jiang S., Racke R., On some quasilinear hyperbolic-parabolic initial boundary value problems, Math. Meth. Appl. Sci. 12 (1990), 315-339. (1990) Zbl0706.35098MR1048561
  35. Kawashima S., Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Thesis, Kyoto University, 1983. 
  36. Kawashima S., Okada M., Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A. 53 (1982), 384-387. (1982) Zbl0522.76098MR0694940
  37. Kawashima S., Shibata Y., Global existence and exponential stability of small solutions to nonlinear viscoelasticity, to appear in Commun. Math. Phys. Zbl0779.35066MR1178142
  38. Kawashima S., Shibata Y., On the Neumann problem of one-dimensional nonlinear thermoelasticity with time- independent external forces, preprint, 1992. MR1314530
  39. Klainerman S., Majda A., Formation of singularities for wave equations including the nonlinear vibrating string, Pure Appl. Math. 33 (1980), 241-263. (1980) Zbl0443.35040MR0562736
  40. Kobayashi T., Pecher H., Shibata Y., On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity, preprint, 1992. Zbl0788.35001MR1219900
  41. Lagnese J., Boundary stabilization of linear elastodynamic systems, SIAM J. Control Optim. 21 (1983), 968-984. (1983) Zbl0531.93044MR0719524
  42. MacCamy R.C., Mizel V.J., Existence and nonexistence in the large of solutions of quasilinear wave equations, Arch. Rational Mech. Anal. 25 (1967), 299-320. (1967) Zbl0146.33801MR0216165
  43. Matsumura A., Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with first order dissipation, Publ. RIMS Kyoto Univ. Ser. A 13 (1977), 349-379. (1977) MR0470507
  44. Mizohata K., Ukai S., The global existence of small amplitude solutions to the nonlinear acoustic wave equation, preprint, 1991, Dep. of Information Sci. Tokyo Inst. of Tech. Zbl0794.35108MR1231754
  45. Nagasawa T., On the one-dimensional motion of the polytropic ideal gas non-fixed on the boundary, J. Diff. Eqns. 65 (1986), 49-67. (1986) Zbl0598.34021MR0859472
  46. Pecher H., On global regular solutions of third order partial differential equations, J. Math. Anal. Appl. 73 (1980), 278-299. (1980) Zbl0429.35057MR0560948
  47. Ponce G., Global existence of small solutions to a class of nonlinear evolution equation, Nonlinear Anal. TMA 9 (1985), 399-418. (1985) MR0785713
  48. Ponce G., Racke R., Global existence of small solutions to the initial value problem for nonlinear thermoelasticity, J. Diff. Eqns. 87 (1990), 70-83. (1990) Zbl0725.35065MR1070028
  49. Potier-Ferry M., On the mathematical foundation of elastic stability, I, Arch. Rational Mech. Anal. 78 (1982), 55-72. (1982) MR0654552
  50. Qin T., The global smooth solutions of second order quasilinear hyperbolic equations with dissipation boundary condition, Chinese Anals Math. 9B (1988), 251-269. (1988) MR0968461
  51. Quinn J.P., Russell D.L., Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping, Proc. Roy. Soc. Edinburgh 77A (1977), 97-127. (1977) Zbl0357.35006MR0473539
  52. Rabinowitz P., Periodic solutions of nonlinear partial differential equations, Commun. Pure Appl. Math. 20 (1967), 145-205 II ibid. 22 (1969), 15-39. (1969) MR0206507
  53. Racke R., On the Cauchy problem in nonlinear 3-d-thermoelasticity, Math. Z. 203 (1990), 649-682. (1990) Zbl0701.73002MR1044071
  54. Racke R., Blow-up in nonlinear three-dimensional thermoelasticity, Math. Meth. Appl. Sci. 12 (1990), 267-273. (1990) Zbl0705.35081MR1043758
  55. Racke R., Mathematical aspects in nonlinear thermoelasticity, SFB 256 Lecture Note Series { 25}, 1992. 
  56. Racke R., Lectures on nonlinear evolution equation. Initial value problems, Ser. ``Aspects of Mathematics'', Fridr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1992. MR1158463
  57. Racke R., Shibata Y., Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity, Arch. Rational Mech. Anal. 116 (1991), 1-34. (1991) Zbl0756.73012MR1130241
  58. Racke R., Shibata Y., Zheng S., Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity, to appear in Quart. Appl. Math. Zbl0804.35132MR1247439
  59. Rybka P., Dynamical modelling of phase transitions by means of viscoelasticity in many dimensions, to appear in Proc. Roy. Soc. Edinburgh 121A (1992). Zbl0758.73004MR1169897
  60. Shibata Y., Neumann problem for one-dimensional nonlinear thermoelasticity, to appear in Banach Center Publication. MR1205848
  61. Shibata Y, Nakamura G., On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order, Math. Z. 202 (1989), 1-64. (1989) MR1007739
  62. Shibata Y., Kikuchi M., On the mixed problem for some quasilinear hyperbolic system with fully nonlinear boundary condition, J. Diff. Eqns. 80 (1989), 154-197. (1989) Zbl0689.35055MR1003254
  63. Shibata Y., Zheng S., On some nonlinear hyperbolic systems with damping boundary conditions, Nonlinear Anal. TMA 17 (1991), 233-266. (1991) Zbl0772.35031MR1120976
  64. Slemrod M., Global existence, uniqueness, and asymptotic stability of classical smooth solutions in the one-dimensional non-linear thermoelasticity, Arch. Rational Mech. Anal. 76 (1981), 97-133. (1981) MR0629700
  65. Tanabe H., Equations of evolution, Monographs and Studies in Mathematics, Pitman, London, San Francisco, Melbourne, l979. Zbl0417.35003
  66. Webb G.F., Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Canada J. Math. 32 (1980), 631-643. (1980) Zbl0414.35046MR0586981
  67. Yamada Y., Some remarks on the equation u t t - σ ( y x ) y x x - y x t x = f , Osaka J. Math. 17 (1980), 303-323. (1980) MR0587752
  68. Zheng S., Global solutions and applications to a class of quasilinear hyperbolic-parabolic coupled systems, Sci. Sinica Ser. A 27 (1984), 1274-1286. (1984) Zbl0581.35056MR0794293
  69. Zheng S., Shen W., Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems, Sci. Sinica Ser. A 3 (1987), 1133-1149. (1987) Zbl0649.35013MR0942420
  70. Zuazua E., Stability and decay for a class of nonlinear hyperbolic problems, Asymptotic Anal. 1 (1988), 161-185. (1988) Zbl0677.35069MR0950012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.