Extreme compact operators from Orlicz spaces to C ( Ω )

Shutao Chen; Marek Wisła

Commentationes Mathematicae Universitatis Carolinae (1993)

  • Volume: 34, Issue: 1, page 63-77
  • ISSN: 0010-2628

Abstract

top
Let E ϕ ( μ ) be the subspace of finite elements of an Orlicz space endowed with the Luxemburg norm. The main theorem says that a compact linear operator T : E ϕ ( μ ) C ( Ω ) is extreme if and only if T * ω Ext B ( ( E ϕ ( μ ) ) * ) on a dense subset of Ω , where Ω is a compact Hausdorff topological space and T * ω , x = ( T x ) ( ω ) . This is done via the description of the extreme points of the space of continuous functions C ( Ω , L ϕ ( μ ) ) , L ϕ ( μ ) being an Orlicz space equipped with the Orlicz norm (conjugate to the Luxemburg one). There is also given a theorem on closedness of the set of extreme points of the unit ball with respect to the Orlicz norm.

How to cite

top

Chen, Shutao, and Wisła, Marek. "Extreme compact operators from Orlicz spaces to $C(\Omega )$." Commentationes Mathematicae Universitatis Carolinae 34.1 (1993): 63-77. <http://eudml.org/doc/247528>.

@article{Chen1993,
abstract = {Let $E^\{\varphi \}(\mu )$ be the subspace of finite elements of an Orlicz space endowed with the Luxemburg norm. The main theorem says that a compact linear operator $T:E^\{\varphi \}(\mu )\rightarrow C(\Omega )$ is extreme if and only if $T^\{\ast \}\omega \in \operatorname\{Ext\}\, B((E^\{\varphi \}(\mu ))^\{\ast \})$ on a dense subset of $\Omega $, where $\Omega $ is a compact Hausdorff topological space and $\langle T^\{\ast \} \omega ,x\rangle =(T x)(\omega )$. This is done via the description of the extreme points of the space of continuous functions $C(\Omega ,L^\{\varphi \}(\mu ))$, $L^\{\varphi \}(\mu )$ being an Orlicz space equipped with the Orlicz norm (conjugate to the Luxemburg one). There is also given a theorem on closedness of the set of extreme points of the unit ball with respect to the Orlicz norm.},
author = {Chen, Shutao, Wisła, Marek},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {extreme points; vector valued continuous functions; compact linear operators; Orlicz spaces; vector valued continuous functions; compact linear operators; Orlicz space endowed with the Luxemburg norm; extreme points of the space of continuous functions; Orlicz space equipped with the Orlicz norm; closedness of the set of extreme points of the unit ball with respect to the Orlicz norm},
language = {eng},
number = {1},
pages = {63-77},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Extreme compact operators from Orlicz spaces to $C(\Omega )$},
url = {http://eudml.org/doc/247528},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Chen, Shutao
AU - Wisła, Marek
TI - Extreme compact operators from Orlicz spaces to $C(\Omega )$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 1
SP - 63
EP - 77
AB - Let $E^{\varphi }(\mu )$ be the subspace of finite elements of an Orlicz space endowed with the Luxemburg norm. The main theorem says that a compact linear operator $T:E^{\varphi }(\mu )\rightarrow C(\Omega )$ is extreme if and only if $T^{\ast }\omega \in \operatorname{Ext}\, B((E^{\varphi }(\mu ))^{\ast })$ on a dense subset of $\Omega $, where $\Omega $ is a compact Hausdorff topological space and $\langle T^{\ast } \omega ,x\rangle =(T x)(\omega )$. This is done via the description of the extreme points of the space of continuous functions $C(\Omega ,L^{\varphi }(\mu ))$, $L^{\varphi }(\mu )$ being an Orlicz space equipped with the Orlicz norm (conjugate to the Luxemburg one). There is also given a theorem on closedness of the set of extreme points of the unit ball with respect to the Orlicz norm.
LA - eng
KW - extreme points; vector valued continuous functions; compact linear operators; Orlicz spaces; vector valued continuous functions; compact linear operators; Orlicz space endowed with the Luxemburg norm; extreme points of the space of continuous functions; Orlicz space equipped with the Orlicz norm; closedness of the set of extreme points of the unit ball with respect to the Orlicz norm
UR - http://eudml.org/doc/247528
ER -

References

top
  1. Aubin J.P., Cellina A., Differential Inclusions, Springer Verlag, Berlin, 1984. Zbl0538.34007MR0755330
  2. Blumenthal R.M., Lindenstrauss J., Phelps R.R., Extreme operators into C ( K ) , Pacific J. Math. 15 (1965), 747-756. (1965) Zbl0141.32101MR0209862
  3. Clausing A., Papadopoulou S., Stable convex sets and extreme operators, Math. Ann. 231 (1978), 193-203. (1978) MR0467249
  4. Dunford N., Schwartz J.T., Linear Operators I, General Theory, Pure Appl. Math., vol. 7, Interscience, New York, 1958. Zbl0084.10402MR0117523
  5. Grząślewicz R., Extreme points in C ( K , L ϕ ( μ ) ) , Proc. Amer. Math. Soc. 98 (1986), 611-614. (1986) Zbl0606.46019MR0861761
  6. Krasnosel'skii M.A., Rutickii Y.B., Convex Functions and Orlicz Spaces, Nordhoff, Groningen, 1961. 
  7. Lao B.Y., Zhu X., Extreme points of Orlicz spaces (in Chinese), J. Zhongshan University, no. 2 (1983), 27-36. 
  8. Lindenstrauss J., Tzafriri L., Classical Banach Spaces II, Springer Verlag, Berlin-Heidelberg- New York, 1977. Zbl0403.46022MR0500056
  9. Luxemburg W.A.J., Banach Function Spaces, Thesis, Delft, 1955. Zbl0162.44701MR0072440
  10. Michael E., Continuous selections I, Ann. of Math. (2) 63 (1956), 361-382. (1956) Zbl0071.15902MR0077107
  11. Morris P.D., Phelps R.R., Theorems of Krein-Milman type for certain convex sets of operators, Trans. Amer. Math. Soc. 150 (1970), 183-200. (1970) Zbl0198.46601MR0262804
  12. Musielak J., Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer Verlag, 1983. Zbl0557.46020MR0724434
  13. Orlicz W., Über eine gewisse Klasse von Räumen vom Typus B, Bull. Intern. Acad. Pol., série A, Kraków (1932), 207-220. Zbl0006.31503
  14. Papadopoulou S., On the geometry of stable compact convex sets, Math. Ann. 229 (1977), 193-200. (1977) Zbl0339.46001MR0450938
  15. Wang Zhuogiang, Extreme points of Orlicz sequence spaces (in Chinese), J. Daqing Oil College, no. 1 (1983), 112-121. (1983) 
  16. Wisła M., Extreme points and stable unit balls in Orlicz sequence spaces, Archiv der Math. 56 (1991), 482-490. (1991) MR1100574
  17. Wisła M., A full description of extreme points in C ( Ø m e g a , L ϕ ( μ ) ) , Proc. of Amer. Math. Soc. 113 (1991), 193-200. (1991) MR1072351
  18. Wu Congxin, Wang Tingfu, Chen Shutao, Wang Youwen, Geometry of Orlicz Spaces (in Chinese), Harbin Institute of Technology, Harbin, 1986. 
  19. Wu Congxin, Zhao Shanzhong, Chen Junao, On calculation of rotundity of Orlicz spaces (in Chinese), J. Harbin Inst. of Technology, no. 2 (1978), 1-12. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.