Extreme compact operators from Orlicz spaces to
Commentationes Mathematicae Universitatis Carolinae (1993)
- Volume: 34, Issue: 1, page 63-77
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topChen, Shutao, and Wisła, Marek. "Extreme compact operators from Orlicz spaces to $C(\Omega )$." Commentationes Mathematicae Universitatis Carolinae 34.1 (1993): 63-77. <http://eudml.org/doc/247528>.
@article{Chen1993,
abstract = {Let $E^\{\varphi \}(\mu )$ be the subspace of finite elements of an Orlicz space endowed with the Luxemburg norm. The main theorem says that a compact linear operator $T:E^\{\varphi \}(\mu )\rightarrow C(\Omega )$ is extreme if and only if $T^\{\ast \}\omega \in \operatorname\{Ext\}\, B((E^\{\varphi \}(\mu ))^\{\ast \})$ on a dense subset of $\Omega $, where $\Omega $ is a compact Hausdorff topological space and $\langle T^\{\ast \} \omega ,x\rangle =(T x)(\omega )$. This is done via the description of the extreme points of the space of continuous functions $C(\Omega ,L^\{\varphi \}(\mu ))$, $L^\{\varphi \}(\mu )$ being an Orlicz space equipped with the Orlicz norm (conjugate to the Luxemburg one). There is also given a theorem on closedness of the set of extreme points of the unit ball with respect to the Orlicz norm.},
author = {Chen, Shutao, Wisła, Marek},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {extreme points; vector valued continuous functions; compact linear operators; Orlicz spaces; vector valued continuous functions; compact linear operators; Orlicz space endowed with the Luxemburg norm; extreme points of the space of continuous functions; Orlicz space equipped with the Orlicz norm; closedness of the set of extreme points of the unit ball with respect to the Orlicz norm},
language = {eng},
number = {1},
pages = {63-77},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Extreme compact operators from Orlicz spaces to $C(\Omega )$},
url = {http://eudml.org/doc/247528},
volume = {34},
year = {1993},
}
TY - JOUR
AU - Chen, Shutao
AU - Wisła, Marek
TI - Extreme compact operators from Orlicz spaces to $C(\Omega )$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 1
SP - 63
EP - 77
AB - Let $E^{\varphi }(\mu )$ be the subspace of finite elements of an Orlicz space endowed with the Luxemburg norm. The main theorem says that a compact linear operator $T:E^{\varphi }(\mu )\rightarrow C(\Omega )$ is extreme if and only if $T^{\ast }\omega \in \operatorname{Ext}\, B((E^{\varphi }(\mu ))^{\ast })$ on a dense subset of $\Omega $, where $\Omega $ is a compact Hausdorff topological space and $\langle T^{\ast } \omega ,x\rangle =(T x)(\omega )$. This is done via the description of the extreme points of the space of continuous functions $C(\Omega ,L^{\varphi }(\mu ))$, $L^{\varphi }(\mu )$ being an Orlicz space equipped with the Orlicz norm (conjugate to the Luxemburg one). There is also given a theorem on closedness of the set of extreme points of the unit ball with respect to the Orlicz norm.
LA - eng
KW - extreme points; vector valued continuous functions; compact linear operators; Orlicz spaces; vector valued continuous functions; compact linear operators; Orlicz space endowed with the Luxemburg norm; extreme points of the space of continuous functions; Orlicz space equipped with the Orlicz norm; closedness of the set of extreme points of the unit ball with respect to the Orlicz norm
UR - http://eudml.org/doc/247528
ER -
References
top- Aubin J.P., Cellina A., Differential Inclusions, Springer Verlag, Berlin, 1984. Zbl0538.34007MR0755330
- Blumenthal R.M., Lindenstrauss J., Phelps R.R., Extreme operators into , Pacific J. Math. 15 (1965), 747-756. (1965) Zbl0141.32101MR0209862
- Clausing A., Papadopoulou S., Stable convex sets and extreme operators, Math. Ann. 231 (1978), 193-203. (1978) MR0467249
- Dunford N., Schwartz J.T., Linear Operators I, General Theory, Pure Appl. Math., vol. 7, Interscience, New York, 1958. Zbl0084.10402MR0117523
- Grząślewicz R., Extreme points in , Proc. Amer. Math. Soc. 98 (1986), 611-614. (1986) Zbl0606.46019MR0861761
- Krasnosel'skii M.A., Rutickii Y.B., Convex Functions and Orlicz Spaces, Nordhoff, Groningen, 1961.
- Lao B.Y., Zhu X., Extreme points of Orlicz spaces (in Chinese), J. Zhongshan University, no. 2 (1983), 27-36.
- Lindenstrauss J., Tzafriri L., Classical Banach Spaces II, Springer Verlag, Berlin-Heidelberg- New York, 1977. Zbl0403.46022MR0500056
- Luxemburg W.A.J., Banach Function Spaces, Thesis, Delft, 1955. Zbl0162.44701MR0072440
- Michael E., Continuous selections I, Ann. of Math. (2) 63 (1956), 361-382. (1956) Zbl0071.15902MR0077107
- Morris P.D., Phelps R.R., Theorems of Krein-Milman type for certain convex sets of operators, Trans. Amer. Math. Soc. 150 (1970), 183-200. (1970) Zbl0198.46601MR0262804
- Musielak J., Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer Verlag, 1983. Zbl0557.46020MR0724434
- Orlicz W., Über eine gewisse Klasse von Räumen vom Typus B, Bull. Intern. Acad. Pol., série A, Kraków (1932), 207-220. Zbl0006.31503
- Papadopoulou S., On the geometry of stable compact convex sets, Math. Ann. 229 (1977), 193-200. (1977) Zbl0339.46001MR0450938
- Wang Zhuogiang, Extreme points of Orlicz sequence spaces (in Chinese), J. Daqing Oil College, no. 1 (1983), 112-121. (1983)
- Wisła M., Extreme points and stable unit balls in Orlicz sequence spaces, Archiv der Math. 56 (1991), 482-490. (1991) MR1100574
- Wisła M., A full description of extreme points in , Proc. of Amer. Math. Soc. 113 (1991), 193-200. (1991) MR1072351
- Wu Congxin, Wang Tingfu, Chen Shutao, Wang Youwen, Geometry of Orlicz Spaces (in Chinese), Harbin Institute of Technology, Harbin, 1986.
- Wu Congxin, Zhao Shanzhong, Chen Junao, On calculation of rotundity of Orlicz spaces (in Chinese), J. Harbin Inst. of Technology, no. 2 (1978), 1-12.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.