Efficient computation of addition chains
F. Bergeron; J. Berstel; S. Brlek
Journal de théorie des nombres de Bordeaux (1994)
- Volume: 6, Issue: 1, page 21-38
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Brauer, On addition chains, Bull. Amer. Math. Soc.45 (1939), 736-739. Zbl0022.11106MR245JFM65.0154.02
- [2] F. Bergeron, J. Berstel, S. Brlek, A unifying approach to the generation of addition chains, Proc. XV Latin American Conf. on Informatics, Santiago, Chile July 10-14 (1989), 29-38. Zbl0812.11072
- [3] F. Bergeron, J. Berstel, S. Brlek, C. Duboc, Addition chains using continued fractions, J. Algorithms10 (1989), 403-412. Zbl0682.68025MR1006993
- [4] F. Bergeron, J. Olivos, Vectorial addition chains using Euclid's algorithm, Research Report, Dpt. Math., UQAM105 (1989).
- [5] J. Bos, M. Coster, Addition chain heuristics, Proceedings of CRYPTO 89.
- [6] G.E. Collins, The computing time of the Euclidian algorithm, SIAM J. Computing3 (1974), 1-10. Zbl0288.68019MR343683
- [7] P. Downey, B. Leong, R. Sethi, Computing sequences with addition chains,SIAM J. Computing10 (1981), 638-646. Zbl0462.68021MR623072
- [8] A.A. Gioia, M.V. Subbarao, M. Sugunama, The Scholz-Brauer problem in addition chains, Duke Math. J.29 (1962), 481-487. Zbl0108.04701MR140478
- [9] D.E. Knuth, The art of computer programming, vol. 2, Addison-Wesley, 1981. Zbl0477.65002MR633878
- [10] A. Schönhage, A lower bound for the length of addition chains, Theoret. Comput. Sci.1 (1975), 1-12. Zbl0307.68032MR478756
- [11] I. Semba, Systematic method for determining the number of multiplications required to compute xm, where m is a positive integer, J. Information Proc.6 (1983), 31-33. Zbl0512.68033MR702924
- [12] E.G. Thurber, Addition chains and solutions of l(2n) = l(n) and l(2n - 1) = n + l(n) - 1, Discrete Math.16 (1976), 279-289. Zbl0346.10032MR432583
- [13] E.G. Thurber, The Scholz-Brauer problem on addition chains, Pacific J. Math.49 (1973), 229-242. Zbl0277.10040MR342487
- [14] E.G. Thurber, On addition chains l(mn) ≤ l(n) - b and lower bounds for c(r), Duke Math. J.40 (1973), 907-913. Zbl0275.10027
- [14] A.C.-C. Yao, On the evaluation of powers, SIAM J. Comp.9 (1976), 100-103. Zbl0326.68025MR395331