On a theorem of Legendre in the theory of continued fractions
Dominique Barbolosi; Hendrik Jager
Journal de théorie des nombres de Bordeaux (1994)
- Volume: 6, Issue: 1, page 81-94
- ISSN: 1246-7405
Access Full Article
topHow to cite
topReferences
top- [1] D. Barbolosi, Fractions continues à quotients partiels impairs, Thèse, Université de Provence, Marseille (1988). Zbl0713.11052
- [2] P. Billingsley, Ergodic Theory and Information, John Wiley and Sons, New York, London, Sydney (1965). Zbl0141.16702MR192027
- [3] W. Bosma, H. Jager and F. Wiedijk, Some metrical observations on the approximation by continued fractions, Indag. Math.4 (1983), 281-299. Zbl0519.10043MR718069
- [4] P. Fatou, Sur l'approximation des incommensurables et les séries trigonométriques, C. R. Acad. Sci. Paris139 (1904), 1019-1021. Zbl35.0275.02JFM35.0275.02
- [5] J.H. Grace, The classification of rational approximations, Proc. London Math. Soc.17 (1918), 247-258. Zbl47.0166.01JFM47.0166.01
- [6] S. Ito and H. Nakada, On natural extensions of transformations related to Diophantine approximations, Proceedings of the Conference on Number Theory and Combinatorics, Japan 1984, World Scientific Publ. Co., Singapore (1985), 185-207. Zbl0623.10008MR827784
- [7] S. Ito, On Legendre's Theorem related to Diophantine approximations, Séminaire de Théorie des Nombres, Bordeaux, exposé 44 (1987-1988), 44-01-44-19. Zbl0714.11037
- [8] H. Jager and C. Kraaikamp, On the approximation by continued fractions, Indag. Math.51 (1989), 289-307. Zbl0695.10029MR1020023
- [9] J.F. Koksma, Diophantische Approximationen, Julius Springer, Berlin (1936). Zbl0012.39602MR344200
- [10] J.F. Koksma, Bewijs van een stelling over kettingbreuken, Mathematica A6 (1937),226-231. Zbl0018.05302JFM63.0923.02
- [11] J.F. Koksma, On continued fractions, Simon Stevin29 (1951/52), 96-102. Zbl0047.28302MR50640
- [12] C. Kraaikamp, A new class of continued fractions, Acta Arith.57 (1991), 1-39. Zbl0721.11029MR1093246
- [13] A.M. Legendre, Essai sur la théorie des nombres, Duprat, Paris, An VI (1798). JFM30.0201.03
- [14] F. Schweiger, On the approximation by continued fractions with odd and even partial quotients, Mathematisches Institut der Universität Salzburg, Arbeitsbericht1-2 (1984), 105-114.