Pfaffien et discriminant

Jacques Queyrut

Journal de théorie des nombres de Bordeaux (1994)

  • Volume: 6, Issue: 1, page 161-203
  • ISSN: 1246-7405

How to cite


Queyrut, Jacques. "Pfaffien et discriminant." Journal de théorie des nombres de Bordeaux 6.1 (1994): 161-203. <>.

author = {Queyrut, Jacques},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {-theory; quadratic modules; quadratic forms; Gauss sum; trace form; exact sequences},
language = {fre},
number = {1},
pages = {161-203},
publisher = {Université Bordeaux I},
title = {Pfaffien et discriminant},
url = {},
volume = {6},
year = {1994},

AU - Queyrut, Jacques
TI - Pfaffien et discriminant
JO - Journal de théorie des nombres de Bordeaux
PY - 1994
PB - Université Bordeaux I
VL - 6
IS - 1
SP - 161
EP - 203
LA - fre
KW - -theory; quadratic modules; quadratic forms; Gauss sum; trace form; exact sequences
UR -
ER -


  1. [Ba] H. Bass, Lectures on topics in algebraic K-theory, Tata Institute, Bombay (1967). Zbl0226.13006MR279159
  2. [Bo] N. Bourbaki, Éléments de Mathématiques, fasc. 23-24, Algèbre, chap. 8-9, Hermann, 1958-1959. MR98114
  3. [C-P] P.E. Conner and R. Perlis, A survey of trace forms of algebraic number fields, World Sci. Publishing, Singapour (1984). Zbl0551.10017MR761569
  4. [D] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, SpringerLecture Notes in Math.349 (1974), 501-507. Zbl0271.14011MR349635
  5. [E] A.M. Mc Evett, Forms over semisimple algebras with involution, J. Algebra12 (1969), 105-113. Zbl0256.15018MR274481
  6. [F1] A. Fröhlich, Arithmetic and Galois module structure for tame extensions, J. reine angew. Math.286-287 (1976), 380-440. Zbl0385.12004MR432595
  7. [F2] A. Frôhlich, Orthogonal and symplectic representation of groups, Proc. London Math. Soc.24/3 (1972), 450-506. Zbl0274.20053MR308248
  8. [F3] A. Frôhlich, Symplectic local constants and Hermitian Galois module structure, Proc. Internat. Symposium Tyoto 1976, (ed. S. Iyanaga), Japan Soc. for the Promotion of Science, Tokyo (1977), 25-42. Zbl0424.12006MR447180
  9. [F4] A. Fröhlich, Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants, J. reine angew. Math.360 (1985), 84-123. Zbl0556.12005MR799658
  10. [F-McE] A. Fröhlich and A.-M. MC Evett, The representation of Groups by Automorphismes of Forms, J. Algebra12 (1969), 114-133. Zbl0248.18024MR240217
  11. [H] A. Heller, Some exact sequences in algebraic K-theory, J. Algebra76 (1969), 389-408. Zbl0161.01507MR179229
  12. [H-W1] D. Holland and S.M.J. Wilson, Localization and class groups of module categories with exactness defects, à paraître. Zbl0782.11031
  13. [H-W1] D. Holland and S.M.J. Wilson, Factor equivalence of rings of integers and Chinburg 's invariant in the defect class group, à paraître. 
  14. [Q1] J. Queyrut, S-groupe de classes d'un ordre arithmétique, J. Algebra, 76 (1982), 234-260. Zbl0482.16020MR659222
  15. [Q2] J. Queyrut, Modules radicaux sur des ordres arithmétiques, J. Algebra, 84 (1983),420-440. MR723400
  16. [Q3] J. Queyrut, Invariants équivariants de la forme trace, Séminaire de Théorie des Nombres de Bordeaux (1987-88), Exposé 24, 24-01-24-08. Zbl0702.11020
  17. [Sc] W. Scharlau, Quadratic and hermitian Forms, Springer-Verlag, 1985. Zbl0584.10010MR770063
  18. [Se1] J.-P. Serre, Représentation des groupes finis, Herman, 1978. MR543841
  19. [Se2] J.-P. Serre, Corps locaux, Hermann, Paris, 1968. MR354618
  20. [T] J. Tits, Formes quadratiques, groupes orthogonaux et algèbres de Clifford, Inventiones Math.5 (1968), 19-41. Zbl0155.05202MR230747
  21. [Ta] J. Tate, Les conjectures de Stark sur les fonctions L d'Artin en s = 0,- Birkhâuser, Boston, 1984. Zbl0545.12009MR782485
  22. [W] C.T.C. Wall, Graded Brauer Group, J. reine angew. Math.213 (1963), 187-199. Zbl0125.01904MR167498

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.