Monotone retractions and depth of continua
Janusz Jerzy Charatonik; Panayotis Spyrou
Archivum Mathematicum (1994)
- Volume: 030, Issue: 2, page 131-137
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topCharatonik, Janusz Jerzy, and Spyrou, Panayotis. "Monotone retractions and depth of continua." Archivum Mathematicum 030.2 (1994): 131-137. <http://eudml.org/doc/247542>.
@article{Charatonik1994,
abstract = {It is shown that for every two countable ordinals $\alpha $ and $\beta $ with $\alpha > \beta $ there exist $\lambda $-dendroids $X$ and $Y$ whose depths are $\alpha $ and $\beta $ respectively, and a monotone retraction from $X$ onto $Y$. Moreover, the continua $X$ and $Y$ can be either both arclike or both fans.},
author = {Charatonik, Janusz Jerzy, Spyrou, Panayotis},
journal = {Archivum Mathematicum},
keywords = {arclike; continuum; decomposable; dendroid; depth; end; fan; mapping; monotone; retraction; unicoherent; arclike continuum; dendroid; fan; unicoherent continuum; depth; monotone retraction},
language = {eng},
number = {2},
pages = {131-137},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Monotone retractions and depth of continua},
url = {http://eudml.org/doc/247542},
volume = {030},
year = {1994},
}
TY - JOUR
AU - Charatonik, Janusz Jerzy
AU - Spyrou, Panayotis
TI - Monotone retractions and depth of continua
JO - Archivum Mathematicum
PY - 1994
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 030
IS - 2
SP - 131
EP - 137
AB - It is shown that for every two countable ordinals $\alpha $ and $\beta $ with $\alpha > \beta $ there exist $\lambda $-dendroids $X$ and $Y$ whose depths are $\alpha $ and $\beta $ respectively, and a monotone retraction from $X$ onto $Y$. Moreover, the continua $X$ and $Y$ can be either both arclike or both fans.
LA - eng
KW - arclike; continuum; decomposable; dendroid; depth; end; fan; mapping; monotone; retraction; unicoherent; arclike continuum; dendroid; fan; unicoherent continuum; depth; monotone retraction
UR - http://eudml.org/doc/247542
ER -
References
top- Snake-like continua, Duke Math. J. 18 (1951), 653-663. (1951) Zbl0043.16804MR0043450
- A characterization of smooth Cantor bouquets, Proc. Amer. Math. Soc. 108 (1990), 529-534. (1990) MR0991691
- Depth of dendroids, Math. Pannonica, 5/1 (1993), 113-119. MR1279349
- The Lelek fan is unique, Houston J. Math. 15 (1989), 27-34. (1989) Zbl0675.54034MR1002079
- Tree-likeness of dendroids and -dendroids, Fund. Math. 68 (1970), 19-22. (1970) MR0261558
- On classification of hereditarily decomposable continua, Moscow Univ. Math. Bull. 29 (1974), 94-99. (1974) Zbl0304.54035MR0367944
- Topology, Springer Verlag, 1984. (1984) MR0734483
- On plane dendroids and their end points in the classical sense, Fund. Math. 49 (1961), 301-319. (1961) Zbl0099.17701MR0133806
- Continuous mappings on continua, Dissertationes Math. (Rozprawy Mat.) 157 (1979), 1-91. (1979) Zbl0444.54021MR0522934
- The depth in tranches in -dendroids, Proc. Amer. Math. Soc 96 (1986), 715-720. (1986) MR0826508
- Hyperspaces of sets, M. Dekker, 1978. (1978) Zbl0432.54007MR0500811
- On decompositions of Hausdorff continua, Dissertationes Math. (Rozprawy Mat.) 170 (1980), 1-33. (1980) Zbl0455.54006MR0575753
- Finite decompositions and the depth of a continuum, Houston J. Math. 12 (1986), 587-599. (1986) Zbl0713.54038MR0873653
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.