Monotone retractions and depth of continua

Janusz Jerzy Charatonik; Panayotis Spyrou

Archivum Mathematicum (1994)

  • Volume: 030, Issue: 2, page 131-137
  • ISSN: 0044-8753

Abstract

top
It is shown that for every two countable ordinals α and β with α > β there exist λ -dendroids X and Y whose depths are α and β respectively, and a monotone retraction from X onto Y . Moreover, the continua X and Y can be either both arclike or both fans.

How to cite

top

Charatonik, Janusz Jerzy, and Spyrou, Panayotis. "Monotone retractions and depth of continua." Archivum Mathematicum 030.2 (1994): 131-137. <http://eudml.org/doc/247542>.

@article{Charatonik1994,
abstract = {It is shown that for every two countable ordinals $\alpha $ and $\beta $ with $\alpha > \beta $ there exist $\lambda $-dendroids $X$ and $Y$ whose depths are $\alpha $ and $\beta $ respectively, and a monotone retraction from $X$ onto $Y$. Moreover, the continua $X$ and $Y$ can be either both arclike or both fans.},
author = {Charatonik, Janusz Jerzy, Spyrou, Panayotis},
journal = {Archivum Mathematicum},
keywords = {arclike; continuum; decomposable; dendroid; depth; end; fan; mapping; monotone; retraction; unicoherent; arclike continuum; dendroid; fan; unicoherent continuum; depth; monotone retraction},
language = {eng},
number = {2},
pages = {131-137},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Monotone retractions and depth of continua},
url = {http://eudml.org/doc/247542},
volume = {030},
year = {1994},
}

TY - JOUR
AU - Charatonik, Janusz Jerzy
AU - Spyrou, Panayotis
TI - Monotone retractions and depth of continua
JO - Archivum Mathematicum
PY - 1994
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 030
IS - 2
SP - 131
EP - 137
AB - It is shown that for every two countable ordinals $\alpha $ and $\beta $ with $\alpha > \beta $ there exist $\lambda $-dendroids $X$ and $Y$ whose depths are $\alpha $ and $\beta $ respectively, and a monotone retraction from $X$ onto $Y$. Moreover, the continua $X$ and $Y$ can be either both arclike or both fans.
LA - eng
KW - arclike; continuum; decomposable; dendroid; depth; end; fan; mapping; monotone; retraction; unicoherent; arclike continuum; dendroid; fan; unicoherent continuum; depth; monotone retraction
UR - http://eudml.org/doc/247542
ER -

References

top
  1. Snake-like continua, Duke Math. J. 18 (1951), 653-663. (1951) Zbl0043.16804MR0043450
  2. A characterization of smooth Cantor bouquets, Proc. Amer. Math. Soc. 108 (1990), 529-534. (1990) MR0991691
  3. Depth of dendroids, Math. Pannonica, 5/1 (1993), 113-119. MR1279349
  4. The Lelek fan is unique, Houston J. Math. 15 (1989), 27-34. (1989) Zbl0675.54034MR1002079
  5. Tree-likeness of dendroids and λ -dendroids, Fund. Math. 68 (1970), 19-22. (1970) MR0261558
  6. On classification of hereditarily decomposable continua, Moscow Univ. Math. Bull. 29 (1974), 94-99. (1974) Zbl0304.54035MR0367944
  7. Topology, Springer Verlag, 1984. (1984) MR0734483
  8. On plane dendroids and their end points in the classical sense, Fund. Math. 49 (1961), 301-319. (1961) Zbl0099.17701MR0133806
  9. Continuous mappings on continua, Dissertationes Math. (Rozprawy Mat.) 157 (1979), 1-91. (1979) Zbl0444.54021MR0522934
  10. The depth in tranches in λ -dendroids, Proc. Amer. Math. Soc 96 (1986), 715-720. (1986) MR0826508
  11. Hyperspaces of sets, M. Dekker, 1978. (1978) Zbl0432.54007MR0500811
  12. On decompositions of Hausdorff continua, Dissertationes Math. (Rozprawy Mat.) 170 (1980), 1-33. (1980) Zbl0455.54006MR0575753
  13. Finite decompositions and the depth of a continuum, Houston J. Math. 12 (1986), 587-599. (1986) Zbl0713.54038MR0873653

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.