Characterizing tolerance trivial finite algebras
Archivum Mathematicum (1994)
- Volume: 030, Issue: 3, page 165-169
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topChajda, Ivan. "Characterizing tolerance trivial finite algebras." Archivum Mathematicum 030.3 (1994): 165-169. <http://eudml.org/doc/247549>.
@article{Chajda1994,
abstract = {An algebra $A$ is tolerance trivial if $A̰= A$ where $A̰$ is the lattice of all tolerances on $A$. If $A$ contains a Mal’cev function compatible with each $T$$A̰$, then $A$ is tolerance trivial. We investigate finite algebras satisfying also the converse statement.},
author = {Chajda, Ivan},
journal = {Archivum Mathematicum},
keywords = {tolerance relation; finite algebra; lattice; tolerance trivial algebra; Mal’cev function; Pixley function; arithmetical algebra; finite lattice; finite algebras; tolerance; Mal'cev function},
language = {eng},
number = {3},
pages = {165-169},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Characterizing tolerance trivial finite algebras},
url = {http://eudml.org/doc/247549},
volume = {030},
year = {1994},
}
TY - JOUR
AU - Chajda, Ivan
TI - Characterizing tolerance trivial finite algebras
JO - Archivum Mathematicum
PY - 1994
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 030
IS - 3
SP - 165
EP - 169
AB - An algebra $A$ is tolerance trivial if $A̰= A$ where $A̰$ is the lattice of all tolerances on $A$. If $A$ contains a Mal’cev function compatible with each $T$$A̰$, then $A$ is tolerance trivial. We investigate finite algebras satisfying also the converse statement.
LA - eng
KW - tolerance relation; finite algebra; lattice; tolerance trivial algebra; Mal’cev function; Pixley function; arithmetical algebra; finite lattice; finite algebras; tolerance; Mal'cev function
UR - http://eudml.org/doc/247549
ER -
References
top- Semi-boolean algebra, Matem. Vestnik 4 (1967), 177–198. (1967) MR0239957
- Algebraic Theory of Tolerance Relations, Publ. Palacký University Olomouc 1991 (Czech Republic). Zbl0747.08001
- Tolerances in permutable algebras, Czech. Math. J. 38 (1988), 218–225. (1988) MR0946289
- On the existence of non-trivial tolerances in permutable algebras, Czech. Math. J. 40 (1990), 598–600. (1990) Zbl0742.08002MR1084895
- Every at most four element algebra has a Mal’cev theory for permutability, Math. Slovaca 41 (1991), 35–39. (1991) Zbl0779.08001MR1094982
- Maltsev functions on small algebras, Studia Sci. Math. Hungarica (Budapest) 28 (1993), 339–348. (1993) MR1266817
- On the existence conditions for compatible tolerances, Czech. Math. J. 26 (1976), 304–311. (1976) MR0401561
- Tolerances and congruences in implication algebras, Czech. Math. J. 38 (1988), 207–217. (1988) MR0946288
- On Iséki’s BCK-algebras, Lectures Notes in Pure and Appl. Math. 74 (1982), New York, 101–122. (1982) Zbl0486.03033MR0647169
- Is there a Mal’cev theory for single algebras?, Algebra Univ. 8 (1978), 320–329. (1978) Zbl0382.08003MR0472647
- On the general theory of algebraic systems (Russian), Matem. Sbornik 35 (1954), 3–20. (1954)
- Completeness in arithmetical algebras, Algebra Univ. 2 (1972), 177–192. (1972) Zbl0254.08010MR0321843
- Distributivity and permutability of congruence relations in equational classes of algebras, Proc. Amer. Math. Soc. 14 (1963). (1963) Zbl0113.24804MR0146104
- Tolerance relations and BCK-algebras, Math. Japon. 36 (1991). (1991) MR1109222
- On commutative BCK-algebras, Math. Japon. 27 (1982), 197–212. (1982) Zbl0481.03043MR0655224
- On -commutative algebras, Math. Semin. Notes Kobe Univ. 3 (1975), 59–64. (1975) MR0419222
- A Mal’cev condition for admissible relations, Algebra Univ. 3 (1973), 263. (1973) Zbl0276.08004MR0330009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.