Characterizing tolerance trivial finite algebras

Ivan Chajda

Archivum Mathematicum (1994)

  • Volume: 030, Issue: 3, page 165-169
  • ISSN: 0044-8753

Abstract

top
An algebra A is tolerance trivial if A ̰ = A where A ̰ is the lattice of all tolerances on A . If A contains a Mal’cev function compatible with each T A ̰ , then A is tolerance trivial. We investigate finite algebras satisfying also the converse statement.

How to cite

top

Chajda, Ivan. "Characterizing tolerance trivial finite algebras." Archivum Mathematicum 030.3 (1994): 165-169. <http://eudml.org/doc/247549>.

@article{Chajda1994,
abstract = {An algebra $A$ is tolerance trivial if $A̰= A$ where $A̰$ is the lattice of all tolerances on $A$. If $A$ contains a Mal’cev function compatible with each $T$$A̰$, then $A$ is tolerance trivial. We investigate finite algebras satisfying also the converse statement.},
author = {Chajda, Ivan},
journal = {Archivum Mathematicum},
keywords = {tolerance relation; finite algebra; lattice; tolerance trivial algebra; Mal’cev function; Pixley function; arithmetical algebra; finite lattice; finite algebras; tolerance; Mal'cev function},
language = {eng},
number = {3},
pages = {165-169},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Characterizing tolerance trivial finite algebras},
url = {http://eudml.org/doc/247549},
volume = {030},
year = {1994},
}

TY - JOUR
AU - Chajda, Ivan
TI - Characterizing tolerance trivial finite algebras
JO - Archivum Mathematicum
PY - 1994
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 030
IS - 3
SP - 165
EP - 169
AB - An algebra $A$ is tolerance trivial if $A̰= A$ where $A̰$ is the lattice of all tolerances on $A$. If $A$ contains a Mal’cev function compatible with each $T$$A̰$, then $A$ is tolerance trivial. We investigate finite algebras satisfying also the converse statement.
LA - eng
KW - tolerance relation; finite algebra; lattice; tolerance trivial algebra; Mal’cev function; Pixley function; arithmetical algebra; finite lattice; finite algebras; tolerance; Mal'cev function
UR - http://eudml.org/doc/247549
ER -

References

top
  1. Semi-boolean algebra, Matem. Vestnik 4 (1967), 177–198. (1967) MR0239957
  2. Algebraic Theory of Tolerance Relations, Publ. Palacký University Olomouc 1991 (Czech Republic). Zbl0747.08001
  3. Tolerances in permutable algebras, Czech. Math. J. 38 (1988), 218–225. (1988) MR0946289
  4. On the existence of non-trivial tolerances in permutable algebras, Czech. Math. J. 40 (1990), 598–600. (1990) Zbl0742.08002MR1084895
  5. Every at most four element algebra has a Mal’cev theory for permutability, Math. Slovaca 41 (1991), 35–39. (1991) Zbl0779.08001MR1094982
  6. Maltsev functions on small algebras, Studia Sci. Math. Hungarica (Budapest) 28 (1993), 339–348. (1993) MR1266817
  7. On the existence conditions for compatible tolerances, Czech. Math. J. 26 (1976), 304–311. (1976) MR0401561
  8. Tolerances and congruences in implication algebras, Czech. Math. J. 38 (1988), 207–217. (1988) MR0946288
  9. On Iséki’s BCK-algebras, Lectures Notes in Pure and Appl. Math. 74 (1982), New York, 101–122. (1982) Zbl0486.03033MR0647169
  10. Is there a Mal’cev theory for single algebras?, Algebra Univ. 8 (1978), 320–329. (1978) Zbl0382.08003MR0472647
  11. On the general theory of algebraic systems (Russian), Matem. Sbornik 35 (1954), 3–20. (1954) 
  12. Completeness in arithmetical algebras, Algebra Univ. 2 (1972), 177–192. (1972) Zbl0254.08010MR0321843
  13. Distributivity and permutability of congruence relations in equational classes of algebras, Proc. Amer. Math. Soc. 14 (1963). (1963) Zbl0113.24804MR0146104
  14. Tolerance relations and BCK-algebras, Math. Japon. 36 (1991). (1991) MR1109222
  15. On commutative BCK-algebras, Math. Japon. 27 (1982), 197–212. (1982) Zbl0481.03043MR0655224
  16. On -commutative algebras, Math. Semin. Notes Kobe Univ. 3 (1975), 59–64. (1975) MR0419222
  17. A Mal’cev condition for admissible relations, Algebra Univ. 3 (1973), 263. (1973) Zbl0276.08004MR0330009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.