Every at most four element algebra has a Mal'cev theory for permutability

Ivan Chajda

Mathematica Slovaca (1991)

  • Volume: 41, Issue: 1, page 35-39
  • ISSN: 0139-9918

How to cite

top

Chajda, Ivan. "Every at most four element algebra has a Mal'cev theory for permutability." Mathematica Slovaca 41.1 (1991): 35-39. <http://eudml.org/doc/32055>.

@article{Chajda1991,
author = {Chajda, Ivan},
journal = {Mathematica Slovaca},
keywords = {arithmetic variety; permutable congruences; Mal'tsev function},
language = {eng},
number = {1},
pages = {35-39},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Every at most four element algebra has a Mal'cev theory for permutability},
url = {http://eudml.org/doc/32055},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Chajda, Ivan
TI - Every at most four element algebra has a Mal'cev theory for permutability
JO - Mathematica Slovaca
PY - 1991
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 41
IS - 1
SP - 35
EP - 39
LA - eng
KW - arithmetic variety; permutable congruences; Mal'tsev function
UR - http://eudml.org/doc/32055
ER -

References

top
  1. GUMM H.-P., Is there a Maľcev theory for single algebras?, Аlgebra univ., 8, 1978, 320-329. (1978) MR0472647
  2. KOREC I., А ternary function for distributivity and permutability of an equivalence lattice, Proc. Аmer. Math. Soc., 69, 1978, 8-10. (1978) Zbl0382.08004MR0472648
  3. MAĽCEV A. I., On the general theory of algebraic systems, Mat. Sboгník., 35, 1954, 3-20. (1954) MR0065533
  4. PIXLEY A. F., Distгibutivity and peгmutability of congruence relations in equational classes of algebras, Proc. Amer. Math. Soc., 14, 1963, 105-109. (1963) MR0146104
  5. PIXLEY A. F., Local Maľcev conditions, Canad. Math. Bull., 15, 1972, 559-568. (1972) Zbl0254.08009MR0309837

NotesEmbed ?

top

You must be logged in to post comments.