Opial's property and James' quasi-reflexive spaces

Tadeusz Kuczumow; Simeon Reich

Commentationes Mathematicae Universitatis Carolinae (1994)

  • Volume: 35, Issue: 2, page 283-289
  • ISSN: 0010-2628

Abstract

top
Two of James’ three quasi-reflexive spaces, as well as the James Tree, have the uniform w * -Opial property.

How to cite

top

Kuczumow, Tadeusz, and Reich, Simeon. "Opial's property and James' quasi-reflexive spaces." Commentationes Mathematicae Universitatis Carolinae 35.2 (1994): 283-289. <http://eudml.org/doc/247576>.

@article{Kuczumow1994,
abstract = {Two of James’ three quasi-reflexive spaces, as well as the James Tree, have the uniform $w^\{\ast \}$-Opial property.},
author = {Kuczumow, Tadeusz, Reich, Simeon},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {fixed points; James' quasi-reflexive spaces; James Tree; nonexpansive mappings; Opial's property; the demiclosedness principle; James' quasi-reflexive spaces; nonexpansive mappings; demiclosedness principle; James Tree; -Opial property},
language = {eng},
number = {2},
pages = {283-289},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Opial's property and James' quasi-reflexive spaces},
url = {http://eudml.org/doc/247576},
volume = {35},
year = {1994},
}

TY - JOUR
AU - Kuczumow, Tadeusz
AU - Reich, Simeon
TI - Opial's property and James' quasi-reflexive spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 2
SP - 283
EP - 289
AB - Two of James’ three quasi-reflexive spaces, as well as the James Tree, have the uniform $w^{\ast }$-Opial property.
LA - eng
KW - fixed points; James' quasi-reflexive spaces; James Tree; nonexpansive mappings; Opial's property; the demiclosedness principle; James' quasi-reflexive spaces; nonexpansive mappings; demiclosedness principle; James Tree; -Opial property
UR - http://eudml.org/doc/247576
ER -

References

top
  1. Aksoy A.G., Khamsi M.A., Nonstandard Methods in Fixed Point Theory, Springer-Verlag, New York, 1990. Zbl0713.47050MR1066202
  2. Andrew A., Spreading basic sequences and subspaces of James' quasi-reflexive space, Math. Scan. 48 (1981), 109-118. (1981) Zbl0439.46010MR0621422
  3. Brodskii M.S., Milman D.P., On the center of a convex set, Dokl. Akad. Nauk SSSR 59 (1948), 837-840. (1948) MR0024073
  4. Goebel K., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990. MR1074005
  5. Goebel K., Reich S., Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984. Zbl0537.46001MR0744194
  6. Goebel K., Sekowski T., Stachura A., Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball, Nonlinear Analysis 4 (1980), 1011-1021. (1980) Zbl0448.47048MR0586863
  7. Gǫrnicki J., Some remarks on almost convergence of the Picard iterates for nonexpansive mappings in Banach spaces which satisfy the Opial condition, Comment. Math. 29 (1988), 59-68. (1988) MR0988960
  8. Gossez J.P., Lami Dozo E., Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-573. (1972) MR0310717
  9. James R.C., Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518-527. (1950) Zbl0039.12202MR0039915
  10. James R.C., A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. USA 37 (1951), 134-137. (1951) MR0044024
  11. James R.C., A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743. (1974) Zbl0286.46018MR0417763
  12. James R.C., Banach spaces quasi-reflexive of order one, Studia Math. 60 (1977), 157-177. (1977) Zbl0356.46017MR0461099
  13. Karlovitz L.A., On nonexpansive mappings, Proc. Amer. Math. Soc. 55 (1976), 321-325. (1976) Zbl0328.47033MR0405182
  14. Khamsi M.A., James' quasi-reflexive space has the fixed point property, Bull. Austral. Math. Soc. 39 (1989), 25-30. (1989) Zbl0672.47045MR0976257
  15. Khamsi M.A., Normal structure for Banach spaces with Schauder decomposition, Canad. Math. Bull. 32 (1989), 344-351. (1989) Zbl0647.46016MR1010075
  16. Khamsi M.A., On uniform Opial condition and uniform Kadec-Klee property in Banach and metric spaces, preprint. Zbl0854.47035MR1380728
  17. Kirk W.A., A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. (1965) Zbl0141.32402MR0189009
  18. Kuczumow T., Weak convergence theorems for nonexpansive mappings and semigroups in Banach spaces with Opial's property, Proc. Amer. Math. Soc. 93 (1985), 430-432. (1985) Zbl0585.47043MR0773996
  19. Lindenstrauss J., Stegall C., Examples of separable spaces which do not contain l 1 and whose duals are non-separable, Studia Math. 54 (1975), 81-105. (1975) MR0390720
  20. Lindenstrauss J., Tzafriri L., Classical Banach Spaces, Vol. I and II, Springer-Verlag, BerlinHeidelberg-New York, 1977 and 1979. MR0415253
  21. Opial Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. (1967) Zbl0179.19902MR0211301
  22. Opial Z., Nonexpansive and Monotone Mappings in Banach Spaces, Lecture Notes 61-1, Center for Dynamical Systems, Brown University, Providence, R.I., 1967. 
  23. Prus S., Banach spaces with the uniform Opial property, Nonlinear Analysis 18 (1992), 697-704. (1992) Zbl0786.46023MR1160113
  24. Tingley D., The normal structure of James' quasi-reflexive space, Bull. Austral. Math. Soc. 42 (1990), 95-100. (1990) Zbl0724.46014MR1066363

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.