Equivariant completions
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 3, page 539-547
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMegrelishvili, Michael. "Equivariant completions." Commentationes Mathematicae Universitatis Carolinae 35.3 (1994): 539-547. <http://eudml.org/doc/247581>.
@article{Megrelishvili1994,
abstract = {An important consequence of a result of Katětov and Morita states that every metrizable space is contained in a complete metrizable space of the same dimension. We give an equivariant version of this fact in the case of a locally compact $\sigma $-compact acting group.},
author = {Megrelishvili, Michael},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {equivariant completion; factorization; dimension; dimension},
language = {eng},
number = {3},
pages = {539-547},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Equivariant completions},
url = {http://eudml.org/doc/247581},
volume = {35},
year = {1994},
}
TY - JOUR
AU - Megrelishvili, Michael
TI - Equivariant completions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 3
SP - 539
EP - 547
AB - An important consequence of a result of Katětov and Morita states that every metrizable space is contained in a complete metrizable space of the same dimension. We give an equivariant version of this fact in the case of a locally compact $\sigma $-compact acting group.
LA - eng
KW - equivariant completion; factorization; dimension; dimension
UR - http://eudml.org/doc/247581
ER -
References
top- Bourbaki N., General Topology, Parts 1, 2, Hermann Paris (1966). (1966)
- Bourbaki N., Topologie Générale, Ch. IX,X, Hermann Paris (1958). (1958) MR0173226
- Bronstein I.U., Extensions of Minimal Transformation Groups, Sijthoff & Noordhoff, Alphen aan den Rijn, 1979. MR0550605
- Brook R.B., A construction of the greatest ambit, Math. Systems Theory 4 (1970), 243-248. (1970) MR0267038
- Dikranjan D.N., Prodanov I.R., Stoyanov L.N., Topological Groups: Characters, Dualities and Minimal Group Topologies, Marcel Dekker: Pure Appl. Math. 130 (1989). (1989) MR1015288
- Engelking R., General Topology, P.W.N., Warszawa (1977). (1977) Zbl0373.54002MR0500780
- de Groot J., The action of a locally compact group on a metric space, Nieuw Arch. Wisk. (3) 7 (1959), 70-74. (1959) Zbl0092.02802MR0124434
- de Groot J., Mcdowell R.H., Extension of mappings on metric spaces, Fund. Math. 68 (1960), 251-263. (1960) Zbl0100.18903MR0124026
- Isbell J., Uniform Spaces, AMS, Providence, Rhode Island (1964). (1964) Zbl0124.15601MR0170323
- Katětov M., On the dimension of non-separable spaces I, Czech. Math. J. 2 (1952), 333-368. (1952) MR0061372
- Megrelishvili M., Quasibounded uniform -spaces (in Russian), Manuscript deposited at Gruz. NIINTI (Tbilisi) on March 3, 1987, No.331-G.
- Megrelishvili M., A Tychonoff -space not admitting a compact Hausdorff -extension or -linearization, Russ. Math. Surv. 43:2 (1988), 177-178. (1988) MR0940673
- Megrelishvili M., Compactification and factorization in the category of -spaces, Categorical Topology and its Relation to Analysis, Algebra and Combinatorics J. Adámek, S. MacLane World Scientific Singapore (1989), 220-237. (1989) MR1047903
- Morita K., Normal families and dimension theory in metric spaces, Math. Ann. 128, N4 (1954), 143-156. (1954) MR0065906
- Peters J., Sund T., Automorphisms of locally compact groups, Pacific J. Math. 76 (1978), 143-146. (1978) Zbl0354.22010MR0578732
- de Vries J., Universal topological transformation groups, General Topology and its Applications 5 (1975), 107-122. (1975) Zbl0299.54030MR0372834
- de Vries J., Topological Transformation Groups I: A Categorical Approach, Math. Centre Tract 65 Mathematisch Centrum, Amsterdam (1975). (1975) MR0415586
- de Vries J., On the existence of -compactifications, Bull. Ac. Polon. Sci. Ser. Math. 26 (1978), 275-280. (1978) Zbl0378.54028MR0644661
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.