Equivariant completions

Michael Megrelishvili

Commentationes Mathematicae Universitatis Carolinae (1994)

  • Volume: 35, Issue: 3, page 539-547
  • ISSN: 0010-2628

Abstract

top
An important consequence of a result of Katětov and Morita states that every metrizable space is contained in a complete metrizable space of the same dimension. We give an equivariant version of this fact in the case of a locally compact σ -compact acting group.

How to cite

top

Megrelishvili, Michael. "Equivariant completions." Commentationes Mathematicae Universitatis Carolinae 35.3 (1994): 539-547. <http://eudml.org/doc/247581>.

@article{Megrelishvili1994,
abstract = {An important consequence of a result of Katětov and Morita states that every metrizable space is contained in a complete metrizable space of the same dimension. We give an equivariant version of this fact in the case of a locally compact $\sigma $-compact acting group.},
author = {Megrelishvili, Michael},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {equivariant completion; factorization; dimension; dimension},
language = {eng},
number = {3},
pages = {539-547},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Equivariant completions},
url = {http://eudml.org/doc/247581},
volume = {35},
year = {1994},
}

TY - JOUR
AU - Megrelishvili, Michael
TI - Equivariant completions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 3
SP - 539
EP - 547
AB - An important consequence of a result of Katětov and Morita states that every metrizable space is contained in a complete metrizable space of the same dimension. We give an equivariant version of this fact in the case of a locally compact $\sigma $-compact acting group.
LA - eng
KW - equivariant completion; factorization; dimension; dimension
UR - http://eudml.org/doc/247581
ER -

References

top
  1. Bourbaki N., General Topology, Parts 1, 2, Hermann Paris (1966). (1966) 
  2. Bourbaki N., Topologie Générale, Ch. IX,X, Hermann Paris (1958). (1958) MR0173226
  3. Bronstein I.U., Extensions of Minimal Transformation Groups, Sijthoff & Noordhoff, Alphen aan den Rijn, 1979. MR0550605
  4. Brook R.B., A construction of the greatest ambit, Math. Systems Theory 4 (1970), 243-248. (1970) MR0267038
  5. Dikranjan D.N., Prodanov I.R., Stoyanov L.N., Topological Groups: Characters, Dualities and Minimal Group Topologies, Marcel Dekker: Pure Appl. Math. 130 (1989). (1989) MR1015288
  6. Engelking R., General Topology, P.W.N., Warszawa (1977). (1977) Zbl0373.54002MR0500780
  7. de Groot J., The action of a locally compact group on a metric space, Nieuw Arch. Wisk. (3) 7 (1959), 70-74. (1959) Zbl0092.02802MR0124434
  8. de Groot J., Mcdowell R.H., Extension of mappings on metric spaces, Fund. Math. 68 (1960), 251-263. (1960) Zbl0100.18903MR0124026
  9. Isbell J., Uniform Spaces, AMS, Providence, Rhode Island (1964). (1964) Zbl0124.15601MR0170323
  10. Katětov M., On the dimension of non-separable spaces I, Czech. Math. J. 2 (1952), 333-368. (1952) MR0061372
  11. Megrelishvili M., Quasibounded uniform G -spaces (in Russian), Manuscript deposited at Gruz. NIINTI (Tbilisi) on March 3, 1987, No.331-G. 
  12. Megrelishvili M., A Tychonoff G -space not admitting a compact Hausdorff G -extension or G -linearization, Russ. Math. Surv. 43:2 (1988), 177-178. (1988) MR0940673
  13. Megrelishvili M., Compactification and factorization in the category of G -spaces, Categorical Topology and its Relation to Analysis, Algebra and Combinatorics J. Adámek, S. MacLane World Scientific Singapore (1989), 220-237. (1989) MR1047903
  14. Morita K., Normal families and dimension theory in metric spaces, Math. Ann. 128, N4 (1954), 143-156. (1954) MR0065906
  15. Peters J., Sund T., Automorphisms of locally compact groups, Pacific J. Math. 76 (1978), 143-146. (1978) Zbl0354.22010MR0578732
  16. de Vries J., Universal topological transformation groups, General Topology and its Applications 5 (1975), 107-122. (1975) Zbl0299.54030MR0372834
  17. de Vries J., Topological Transformation Groups I: A Categorical Approach, Math. Centre Tract 65 Mathematisch Centrum, Amsterdam (1975). (1975) MR0415586
  18. de Vries J., On the existence of G -compactifications, Bull. Ac. Polon. Sci. Ser. Math. 26 (1978), 275-280. (1978) Zbl0378.54028MR0644661

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.