A -porous set need not be -bilaterally porous
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 4, page 697-703
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNájares, R. J., and Zajíček, Luděk. "A $\sigma $-porous set need not be $\sigma $-bilaterally porous." Commentationes Mathematicae Universitatis Carolinae 35.4 (1994): 697-703. <http://eudml.org/doc/247586>.
@article{Nájares1994,
abstract = {A closed subset of the real line which is right porous but is not $\sigma $-left-porous is constructed.},
author = {Nájares, R. J., Zajíček, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {sigma-porous; sigma-bilaterally-porous; right porous; right porosity; left porosity; sigma-bilaterally porous set; closed set},
language = {eng},
number = {4},
pages = {697-703},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A $\sigma $-porous set need not be $\sigma $-bilaterally porous},
url = {http://eudml.org/doc/247586},
volume = {35},
year = {1994},
}
TY - JOUR
AU - Nájares, R. J.
AU - Zajíček, Luděk
TI - A $\sigma $-porous set need not be $\sigma $-bilaterally porous
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 4
SP - 697
EP - 703
AB - A closed subset of the real line which is right porous but is not $\sigma $-left-porous is constructed.
LA - eng
KW - sigma-porous; sigma-bilaterally-porous; right porous; right porosity; left porosity; sigma-bilaterally porous set; closed set
UR - http://eudml.org/doc/247586
ER -
References
top- Foran J., Continuous functions need not have -porous graphs, Real Anal. Exchange 11 (1985-86), 194-203. (1985-86) Zbl0607.26005MR0828490
- Zajíček L., On -porous sets and Borel sets, Topology Appl. 33 (1989), 99-103. (1989) MR1020986
- Zajíček L., Sets of -porosity and sets of -porosity , Časopis Pěst. Mat. 101 (1976), 350-359. (1976) Zbl0341.30026MR0457731
- Zajíček L., Porosity and -porosity, Real Anal. Exchange 13 (1987-88), 314-350. (1987-88) MR0943561
- Evans M.J., Humke P.D., Saxe K., A symmetric porosity conjecture of L. Zajíček, Real Anal. Exchange 17 (1991-92), 258-271. (1991-92) MR1147367
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.