Sets of -porosity and sets of -porosity
Časopis pro pěstování matematiky (1976)
- Volume: 101, Issue: 4, page 350-359
- ISSN: 0528-2195
Access Full Article
topHow to cite
topZajíček, Luděk. "Sets of $\sigma $-porosity and sets of $\sigma $-porosity $(q)$." Časopis pro pěstování matematiky 101.4 (1976): 350-359. <http://eudml.org/doc/21297>.
@article{Zajíček1976,
author = {Zajíček, Luděk},
journal = {Časopis pro pěstování matematiky},
language = {eng},
number = {4},
pages = {350-359},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Sets of $\sigma $-porosity and sets of $\sigma $-porosity $(q)$},
url = {http://eudml.org/doc/21297},
volume = {101},
year = {1976},
}
TY - JOUR
AU - Zajíček, Luděk
TI - Sets of $\sigma $-porosity and sets of $\sigma $-porosity $(q)$
JO - Časopis pro pěstování matematiky
PY - 1976
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 101
IS - 4
SP - 350
EP - 359
LA - eng
UR - http://eudml.org/doc/21297
ER -
References
top- E. P. Dolženko, Graničnye svojstva proizvolnych funkcij, Izv. Akad. Nauk SSSR Ser. Mat. 3I (1967), 3-14. (1967) MR0217297
- N. Yanagihara, Angular cluster sets and horicyclic cluster sets, Proc. Japan Acad. 45 (1969), 423-428. (1969) MR0262506
- H. Yoshida, Tangential boundary properties of arbitrary functions in the unit disc, Nagyoa Math. J. 46 (1972), 111-120. (1972) Zbl0211.38902MR0302920
- H. Yoshida, On the boundary properties and the spherical derivatives of meromorphic functions in the unit disc, Math. Z. I32 (1973), 51-68. (1973) Zbl0245.30029MR0324048
- L. Zajíček, On cluster sets of arbitгary functions, Fund. Math. 83 (1974), 197-217. (1974) MR0338294
Citations in EuDML Documents
top- R. J. Nájares, Luděk Zajíček, A -porous set need not be -bilaterally porous
- Frédéric Bayart, Étienne Matheron, Pierre Moreau, Small sets and hypercyclic vectors
- L. ZajÍček, Small non-σ-porous sets in topologically complete metric spaces
- Libor Veselý, Some new results on accretive multivalued operators
- Jaroslav Červeňanský, Tibor Šalát, Convergence preserving permutations of and Fréchet’s space of permutations of
- Miroslav Zelený, Sets of extended uniqueness and -porosity
- Luděk Zajíček, Porosity, derived numbers and knot points of typical continuous functions
- Michael Dymond, On the structure of universal differentiability sets
- Luděk Zajíček, Miroslav Zelený, On the complexity of some -ideals of -P-porous sets
- Miroslav Zelený, Jan Pelant, The structure of the -ideal of -porous sets
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.