On the range of a normal Jordan -derivation
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 4, page 691-695
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Anderson J.H., Foias C., Properties which normal operators share with normal derivations and related operators, Pacific J. Math. 61 (1975), 313-325. (1975) Zbl0324.47018MR0412889
- Anderson J.H., Bunce J.W., Deddens J.A., Williams J.P., C*-algebras and derivation ranges, Acta Sci. Math. 40 (1978), 211-227. (1978) Zbl0406.46048MR0515202
- Johnson B.E., Williams J.P., The range of a normal derivation, Pacific J. Math. 58 (1975), 105-122. (1975) Zbl0275.47010MR0380490
- Molnár L., The range of Jordan *-derivation, submitted.
- Šemrl P., Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), 157-165. (1991) MR1100685
- Šemrl P., Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc., to appear. MR1158008
- Šemrl P., Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120 (1994), 515-519. (1994) MR1186136
- Stampfli J.G., On the range of a hyponormal derivation, Proc. Amer. Math. Soc. 52 (1975), 117-120. (1975) Zbl0315.47019MR0377575
- Stampfli J.G., On self-adjoint derivation ranges, Pacific J. Math. 82 (1979), 257-277. (1979) Zbl0427.47025MR0549849