On the range of a Jordan *-derivation

Péter Battyányi

Commentationes Mathematicae Universitatis Carolinae (1996)

  • Volume: 37, Issue: 4, page 659-665
  • ISSN: 0010-2628

Abstract

top
In this paper, we examine some questions concerned with certain ``skew'' properties of the range of a Jordan *-derivation. In the first part we deal with the question, for example, when the range of a Jordan *-derivation is a complex subspace. The second part of this note treats a problem in relation to the range of a generalized Jordan *-derivation.

How to cite

top

Battyányi, Péter. "On the range of a Jordan *-derivation." Commentationes Mathematicae Universitatis Carolinae 37.4 (1996): 659-665. <http://eudml.org/doc/247934>.

@article{Battyányi1996,
abstract = {In this paper, we examine some questions concerned with certain ``skew'' properties of the range of a Jordan *-derivation. In the first part we deal with the question, for example, when the range of a Jordan *-derivation is a complex subspace. The second part of this note treats a problem in relation to the range of a generalized Jordan *-derivation.},
author = {Battyányi, Péter},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Jordan *-derivation},
language = {eng},
number = {4},
pages = {659-665},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the range of a Jordan *-derivation},
url = {http://eudml.org/doc/247934},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Battyányi, Péter
TI - On the range of a Jordan *-derivation
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 4
SP - 659
EP - 665
AB - In this paper, we examine some questions concerned with certain ``skew'' properties of the range of a Jordan *-derivation. In the first part we deal with the question, for example, when the range of a Jordan *-derivation is a complex subspace. The second part of this note treats a problem in relation to the range of a generalized Jordan *-derivation.
LA - eng
KW - Jordan *-derivation
UR - http://eudml.org/doc/247934
ER -

References

top
  1. Apostol C., Stampfli J.G., On derivation ranges, Indiana Univ. Math. J. 25 (1976), 857-869. (1976) Zbl0355.47025MR0412890
  2. Brešar M., Zalar B., On the structure of Jordan *-derivations, Colloquium Math. 63 (1992), 163-171. (1992) MR1180629
  3. Fialkow L.A., Loebl R., Elementary mappings into ideals of operators, Ill. J. Math. 28 (1984), 555-578. (1984) Zbl0529.47033MR0761990
  4. Fillmore P.A., Stampfli J.G., Williams J.P., On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. 33 (1972), 179-192. (1972) Zbl0246.47006MR0322534
  5. Johnson B.E., Williams J.P., The range of a normal derivation, Pacific J. Math. 58 (1975), 105-122. (1975) Zbl0275.47010MR0380490
  6. Molnár L., The range of a Jordan *-derivation, preprint. MR1416276
  7. Molnár L., On the range of a normal Jordan *-derivation, Comment. Math. Univ. Carolinae 35 (1994), 691-695. (1994) MR1321239
  8. Molnár L., Jordan *-derivation pairs on a complex *-algebra, preprint. MR1466293
  9. Molnár L., A condition for a subspace of ( H ) to be an ideal, Linear Algebra and Appl., to appear. Zbl0852.46021MR1374262
  10. Molnár L., The range of a Jordan *-derivation on an H * -algebra, preprint. MR1406395
  11. Radjavi H., Rosenthal P., Matrices for operators and generators of ( H ) , J. London Math. Soc. 2 (1970), 557-560. (1970) MR0265978
  12. Šemrl P., On Jordan *-derivations and an application, Colloquium Math. 59 (1990), 241-251. (1990) MR1090656
  13. Šemrl P., Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), 157-165. (1991) MR1100685
  14. Šemrl P., Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119 (1993), 1105-1113. (1993) MR1158008
  15. Šemrl P., Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120 (1994), 515-518. (1994) MR1186136
  16. Stampfli J.G., Derivations on ( ) : The range, Ill. J. Math. 17 (1973), 518-524. (1973) MR0318914
  17. Stampfli J.G., On the range of a hyponormal derivation, Proc. Amer. Math. Soc. 52 (1975), 117-120. (1975) Zbl0315.47019MR0377575
  18. Williams J.P., Derivations ranges: open questions, Topics in Modern Operator Theory (Timisoara/ Herculane, 1980), Birkhäuser, Basel-Boston, Mass., 1981, pp. 319-328. MR0672832
  19. Zalar B., Jordan *-derivation pairs and quadratic functionals on modules over *-rings, preprint. MR1466292

NotesEmbed ?

top

You must be logged in to post comments.