On the range of a Jordan *-derivation

Péter Battyányi

Commentationes Mathematicae Universitatis Carolinae (1996)

  • Volume: 37, Issue: 4, page 659-665
  • ISSN: 0010-2628

Abstract

top
In this paper, we examine some questions concerned with certain ``skew'' properties of the range of a Jordan *-derivation. In the first part we deal with the question, for example, when the range of a Jordan *-derivation is a complex subspace. The second part of this note treats a problem in relation to the range of a generalized Jordan *-derivation.

How to cite

top

Battyányi, Péter. "On the range of a Jordan *-derivation." Commentationes Mathematicae Universitatis Carolinae 37.4 (1996): 659-665. <http://eudml.org/doc/247934>.

@article{Battyányi1996,
abstract = {In this paper, we examine some questions concerned with certain ``skew'' properties of the range of a Jordan *-derivation. In the first part we deal with the question, for example, when the range of a Jordan *-derivation is a complex subspace. The second part of this note treats a problem in relation to the range of a generalized Jordan *-derivation.},
author = {Battyányi, Péter},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Jordan *-derivation},
language = {eng},
number = {4},
pages = {659-665},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the range of a Jordan *-derivation},
url = {http://eudml.org/doc/247934},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Battyányi, Péter
TI - On the range of a Jordan *-derivation
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 4
SP - 659
EP - 665
AB - In this paper, we examine some questions concerned with certain ``skew'' properties of the range of a Jordan *-derivation. In the first part we deal with the question, for example, when the range of a Jordan *-derivation is a complex subspace. The second part of this note treats a problem in relation to the range of a generalized Jordan *-derivation.
LA - eng
KW - Jordan *-derivation
UR - http://eudml.org/doc/247934
ER -

References

top
  1. Apostol C., Stampfli J.G., On derivation ranges, Indiana Univ. Math. J. 25 (1976), 857-869. (1976) Zbl0355.47025MR0412890
  2. Brešar M., Zalar B., On the structure of Jordan *-derivations, Colloquium Math. 63 (1992), 163-171. (1992) MR1180629
  3. Fialkow L.A., Loebl R., Elementary mappings into ideals of operators, Ill. J. Math. 28 (1984), 555-578. (1984) Zbl0529.47033MR0761990
  4. Fillmore P.A., Stampfli J.G., Williams J.P., On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. 33 (1972), 179-192. (1972) Zbl0246.47006MR0322534
  5. Johnson B.E., Williams J.P., The range of a normal derivation, Pacific J. Math. 58 (1975), 105-122. (1975) Zbl0275.47010MR0380490
  6. Molnár L., The range of a Jordan *-derivation, preprint. MR1416276
  7. Molnár L., On the range of a normal Jordan *-derivation, Comment. Math. Univ. Carolinae 35 (1994), 691-695. (1994) MR1321239
  8. Molnár L., Jordan *-derivation pairs on a complex *-algebra, preprint. MR1466293
  9. Molnár L., A condition for a subspace of ( H ) to be an ideal, Linear Algebra and Appl., to appear. Zbl0852.46021MR1374262
  10. Molnár L., The range of a Jordan *-derivation on an H * -algebra, preprint. MR1406395
  11. Radjavi H., Rosenthal P., Matrices for operators and generators of ( H ) , J. London Math. Soc. 2 (1970), 557-560. (1970) MR0265978
  12. Šemrl P., On Jordan *-derivations and an application, Colloquium Math. 59 (1990), 241-251. (1990) MR1090656
  13. Šemrl P., Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), 157-165. (1991) MR1100685
  14. Šemrl P., Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119 (1993), 1105-1113. (1993) MR1158008
  15. Šemrl P., Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120 (1994), 515-518. (1994) MR1186136
  16. Stampfli J.G., Derivations on ( ) : The range, Ill. J. Math. 17 (1973), 518-524. (1973) MR0318914
  17. Stampfli J.G., On the range of a hyponormal derivation, Proc. Amer. Math. Soc. 52 (1975), 117-120. (1975) Zbl0315.47019MR0377575
  18. Williams J.P., Derivations ranges: open questions, Topics in Modern Operator Theory (Timisoara/ Herculane, 1980), Birkhäuser, Basel-Boston, Mass., 1981, pp. 319-328. MR0672832
  19. Zalar B., Jordan *-derivation pairs and quadratic functionals on modules over *-rings, preprint. MR1466292

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.