On -limit sets of nonautonomous differential equations
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 2, page 267-281
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKlebanov, Boris S.. "On $\omega $-limit sets of nonautonomous differential equations." Commentationes Mathematicae Universitatis Carolinae 35.2 (1994): 267-281. <http://eudml.org/doc/247598>.
@article{Klebanov1994,
abstract = {In this paper the $\omega $-limit behaviour of trajectories of solutions of ordinary differential equations is studied by methods of an axiomatic theory of solution spaces. We prove, under very general assumptions, semi-invariance of $\omega $-limit sets and a Poincar’e-Bendixon type theorem.},
author = {Klebanov, Boris S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\omega $-limit sets; stationary points; the Poincar’e-Bendixon theorem; asymptotic behaviour; nonautonomous ordinary differential equations; Poincaré-Bendixson theorem},
language = {eng},
number = {2},
pages = {267-281},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On $\omega $-limit sets of nonautonomous differential equations},
url = {http://eudml.org/doc/247598},
volume = {35},
year = {1994},
}
TY - JOUR
AU - Klebanov, Boris S.
TI - On $\omega $-limit sets of nonautonomous differential equations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 2
SP - 267
EP - 281
AB - In this paper the $\omega $-limit behaviour of trajectories of solutions of ordinary differential equations is studied by methods of an axiomatic theory of solution spaces. We prove, under very general assumptions, semi-invariance of $\omega $-limit sets and a Poincar’e-Bendixon type theorem.
LA - eng
KW - $\omega $-limit sets; stationary points; the Poincar’e-Bendixon theorem; asymptotic behaviour; nonautonomous ordinary differential equations; Poincaré-Bendixson theorem
UR - http://eudml.org/doc/247598
ER -
References
top- Artstein Z., Limiting equations and stability of nonautonomous ordinary differential equations, Appendix A in: J.P. LaSalle, {The stability of dynamical systems}, CBMS Regional Conference Series in Applied Mathematics, vol. 25, SIAM, Philadelphia, 1976. Zbl0364.93002MR0481301
- Artstein Z., Topological dynamics of ordinary differential equations and Kurzweil equations, J. Differential Equations 23 (1977), 224-243. (1977) Zbl0353.34044MR0432985
- Artstein Z., The limiting equations of nonautonomous ordinary differential equations, J. Differential Equations 25 (1977), 184-202. (1977) Zbl0358.34045MR0442381
- Artstein Z., Uniform asymptotic stability via the limiting equations, J. Differential Equations 27 (1978), 172-189. (1978) Zbl0383.34037MR0466795
- Coddington E.A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955. Zbl0064.33002MR0069338
- Davy J.L., Properties of the solution set of a generalized differential equation, Bull. Austral. Math. Soc. 6 (1972), 379-398. (1972) Zbl0239.49022MR0303023
- Engelking R., General Topology, PWN, Warsaw, 1977. Zbl0684.54001MR0500780
- Fedorchuk V.V., Filippov V.V., General Topology. Basic Constructions (in Russian), Moscow University Press, Moscow, 1988.
- Filippov V.V., On the theory of solution spaces of ordinary differential equations (in Russian), Dokl. Akad. Nauk SSSR 285 (1985), 1073-1077; English translation: Soviet Math. Dokl. 32 (1985), 850-854. (1985) MR0820601
- Filippov V.V., On the ordinary differential equations with singularities in the right-hand side (in Russian), Mat. Zametki 38 (1985), 832-851; English translation: Math. Notes 38 (1985), 964-974. (1985) MR0823421
- Filippov V.V., Cauchy problem theory for an ordinary differential equation from the point of view of general topology (in Russian), General Topology. Mappings of Topological Spaces, Moscow University Press, Moscow, 1986, 131-164. MR1080764
- Filippov V.V., On stationary points and some geometric properties of solutions of ordinary differential equations (in Russian), Ross. Acad. Nauk Dokl. 323 (1992), 1043-1047; English translation: Russian Acad. Sci. Dokl. Math. 45 (1992), 497-501. (1992) MR1202308
- Filippov V.V., On the Poincaré-Bendixon theorem and compact families of solution spaces of ordinary differential equations (in Russian), Mat. Zametki 53 (1993), 140-144. (1993) MR1220821
- Hartman P., Ordinary differential equations, Wiley, New York, 1964. Zbl1009.34001MR0171038
- Kluczny C., Sur certaines familles de courbes en relation avec la théorie des équations différentielles ordinaires I, II, Annales Universitatis M. Curie-Skłodowska, Sec. A, Math. 15 (1961) 13-40; 16 (1962) 5-18.
- Markus L., Asymptotically autonomous differential systems, Contributions to the Theory of Nonlinear Oscillations, vol. III, Annals of Math. Stud. 36, Princeton University Press, N.J., 1956, 17-29. Zbl0075.27002MR0081388
- Miller R.K., Asymptotic behavior of solutions of nonlinear differential equations, Trans. Amer. Math. Soc. 115 (1965), 400-416. (1965) Zbl0137.28202MR0199502
- Saks S., Theory of the integral, PWN, Warsaw, 1937. Zbl0017.30004
- Savel'ev P.N., On the Poincaré-Bendixon theorem and dissipativity in the plane (in Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1991, no. 3, 69-71; English translation: Moscow Univ. Math. Bull. 46 (1991), no. 3, 54-55. MR1204259
- Sell G.R., Nonautonomous differential equations and topological dynamics I, II, Trans. Amer. Math. Soc. 127 (1967), 241-283. (1967) MR0212313
- Strauss A., Yorke J.A., On asymptotically autonomous differential equations, Math. Systems Theory 1 (1967), 175-182. (1967) Zbl0189.38502MR0213666
- Thieme H.R., Convergence results and a Poincaré-Bendixon trichotomy for asymptotically autonomous differential equations, J. Math. Biol. 30 (1992), 755-763. (1992) MR1175102
- Yorke J.A., Spaces of solutions, Mathematical Systems Theory and Economics, Vol. II, Lecture Notes in Operations Research and Mathematical Economics, vol. 12, Springer-Verlag, New York, 1969, 383-403. Zbl0188.15502MR0361294
- Zaremba S.K., Sur certaines familles de courbes en relation avec la théorie des équations différentielles, Ann. Soc. Polon. Math. 15 (1936), 83-100. (1936)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.