On ω -limit sets of nonautonomous differential equations

Boris S. Klebanov

Commentationes Mathematicae Universitatis Carolinae (1994)

  • Volume: 35, Issue: 2, page 267-281
  • ISSN: 0010-2628

Abstract

top
In this paper the ω -limit behaviour of trajectories of solutions of ordinary differential equations is studied by methods of an axiomatic theory of solution spaces. We prove, under very general assumptions, semi-invariance of ω -limit sets and a Poincar’e-Bendixon type theorem.

How to cite

top

Klebanov, Boris S.. "On $\omega $-limit sets of nonautonomous differential equations." Commentationes Mathematicae Universitatis Carolinae 35.2 (1994): 267-281. <http://eudml.org/doc/247598>.

@article{Klebanov1994,
abstract = {In this paper the $\omega $-limit behaviour of trajectories of solutions of ordinary differential equations is studied by methods of an axiomatic theory of solution spaces. We prove, under very general assumptions, semi-invariance of $\omega $-limit sets and a Poincar’e-Bendixon type theorem.},
author = {Klebanov, Boris S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\omega $-limit sets; stationary points; the Poincar’e-Bendixon theorem; asymptotic behaviour; nonautonomous ordinary differential equations; Poincaré-Bendixson theorem},
language = {eng},
number = {2},
pages = {267-281},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On $\omega $-limit sets of nonautonomous differential equations},
url = {http://eudml.org/doc/247598},
volume = {35},
year = {1994},
}

TY - JOUR
AU - Klebanov, Boris S.
TI - On $\omega $-limit sets of nonautonomous differential equations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 2
SP - 267
EP - 281
AB - In this paper the $\omega $-limit behaviour of trajectories of solutions of ordinary differential equations is studied by methods of an axiomatic theory of solution spaces. We prove, under very general assumptions, semi-invariance of $\omega $-limit sets and a Poincar’e-Bendixon type theorem.
LA - eng
KW - $\omega $-limit sets; stationary points; the Poincar’e-Bendixon theorem; asymptotic behaviour; nonautonomous ordinary differential equations; Poincaré-Bendixson theorem
UR - http://eudml.org/doc/247598
ER -

References

top
  1. Artstein Z., Limiting equations and stability of nonautonomous ordinary differential equations, Appendix A in: J.P. LaSalle, {The stability of dynamical systems}, CBMS Regional Conference Series in Applied Mathematics, vol. 25, SIAM, Philadelphia, 1976. Zbl0364.93002MR0481301
  2. Artstein Z., Topological dynamics of ordinary differential equations and Kurzweil equations, J. Differential Equations 23 (1977), 224-243. (1977) Zbl0353.34044MR0432985
  3. Artstein Z., The limiting equations of nonautonomous ordinary differential equations, J. Differential Equations 25 (1977), 184-202. (1977) Zbl0358.34045MR0442381
  4. Artstein Z., Uniform asymptotic stability via the limiting equations, J. Differential Equations 27 (1978), 172-189. (1978) Zbl0383.34037MR0466795
  5. Coddington E.A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955. Zbl0064.33002MR0069338
  6. Davy J.L., Properties of the solution set of a generalized differential equation, Bull. Austral. Math. Soc. 6 (1972), 379-398. (1972) Zbl0239.49022MR0303023
  7. Engelking R., General Topology, PWN, Warsaw, 1977. Zbl0684.54001MR0500780
  8. Fedorchuk V.V., Filippov V.V., General Topology. Basic Constructions (in Russian), Moscow University Press, Moscow, 1988. 
  9. Filippov V.V., On the theory of solution spaces of ordinary differential equations (in Russian), Dokl. Akad. Nauk SSSR 285 (1985), 1073-1077; English translation: Soviet Math. Dokl. 32 (1985), 850-854. (1985) MR0820601
  10. Filippov V.V., On the ordinary differential equations with singularities in the right-hand side (in Russian), Mat. Zametki 38 (1985), 832-851; English translation: Math. Notes 38 (1985), 964-974. (1985) MR0823421
  11. Filippov V.V., Cauchy problem theory for an ordinary differential equation from the point of view of general topology (in Russian), General Topology. Mappings of Topological Spaces, Moscow University Press, Moscow, 1986, 131-164. MR1080764
  12. Filippov V.V., On stationary points and some geometric properties of solutions of ordinary differential equations (in Russian), Ross. Acad. Nauk Dokl. 323 (1992), 1043-1047; English translation: Russian Acad. Sci. Dokl. Math. 45 (1992), 497-501. (1992) MR1202308
  13. Filippov V.V., On the Poincaré-Bendixon theorem and compact families of solution spaces of ordinary differential equations (in Russian), Mat. Zametki 53 (1993), 140-144. (1993) MR1220821
  14. Hartman P., Ordinary differential equations, Wiley, New York, 1964. Zbl1009.34001MR0171038
  15. Kluczny C., Sur certaines familles de courbes en relation avec la théorie des équations différentielles ordinaires I, II, Annales Universitatis M. Curie-Skłodowska, Sec. A, Math. 15 (1961) 13-40; 16 (1962) 5-18. 
  16. Markus L., Asymptotically autonomous differential systems, Contributions to the Theory of Nonlinear Oscillations, vol. III, Annals of Math. Stud. 36, Princeton University Press, N.J., 1956, 17-29. Zbl0075.27002MR0081388
  17. Miller R.K., Asymptotic behavior of solutions of nonlinear differential equations, Trans. Amer. Math. Soc. 115 (1965), 400-416. (1965) Zbl0137.28202MR0199502
  18. Saks S., Theory of the integral, PWN, Warsaw, 1937. Zbl0017.30004
  19. Savel'ev P.N., On the Poincaré-Bendixon theorem and dissipativity in the plane (in Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1991, no. 3, 69-71; English translation: Moscow Univ. Math. Bull. 46 (1991), no. 3, 54-55. MR1204259
  20. Sell G.R., Nonautonomous differential equations and topological dynamics I, II, Trans. Amer. Math. Soc. 127 (1967), 241-283. (1967) MR0212313
  21. Strauss A., Yorke J.A., On asymptotically autonomous differential equations, Math. Systems Theory 1 (1967), 175-182. (1967) Zbl0189.38502MR0213666
  22. Thieme H.R., Convergence results and a Poincaré-Bendixon trichotomy for asymptotically autonomous differential equations, J. Math. Biol. 30 (1992), 755-763. (1992) MR1175102
  23. Yorke J.A., Spaces of solutions, Mathematical Systems Theory and Economics, Vol. II, Lecture Notes in Operations Research and Mathematical Economics, vol. 12, Springer-Verlag, New York, 1969, 383-403. Zbl0188.15502MR0361294
  24. Zaremba S.K., Sur certaines familles de courbes en relation avec la théorie des équations différentielles, Ann. Soc. Polon. Math. 15 (1936), 83-100. (1936) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.