Two cardinal inequalities for functionally Hausdorff spaces
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 2, page 365-369
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFedeli, Alessandro. "Two cardinal inequalities for functionally Hausdorff spaces." Commentationes Mathematicae Universitatis Carolinae 35.2 (1994): 365-369. <http://eudml.org/doc/247614>.
@article{Fedeli1994,
abstract = {In this paper, two cardinal inequalities for functionally Hausdorff spaces are established. A bound on the cardinality of the $\tau \theta $-closed hull of a subset of a functionally Hausdorff space is given. Moreover, the following theorem is proved: if $X$ is a functionally Hausdorff space, then $|X|\le 2^\{\chi (X)\text\{\it wcd\}(X)\}$.},
author = {Fedeli, Alessandro},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {cardinal functions; $\tau \theta $-closed sets; $w$-compactness degree; -closed sets; -compactness degree; cardinal inequalities},
language = {eng},
number = {2},
pages = {365-369},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Two cardinal inequalities for functionally Hausdorff spaces},
url = {http://eudml.org/doc/247614},
volume = {35},
year = {1994},
}
TY - JOUR
AU - Fedeli, Alessandro
TI - Two cardinal inequalities for functionally Hausdorff spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 2
SP - 365
EP - 369
AB - In this paper, two cardinal inequalities for functionally Hausdorff spaces are established. A bound on the cardinality of the $\tau \theta $-closed hull of a subset of a functionally Hausdorff space is given. Moreover, the following theorem is proved: if $X$ is a functionally Hausdorff space, then $|X|\le 2^{\chi (X)\text{\it wcd}(X)}$.
LA - eng
KW - cardinal functions; $\tau \theta $-closed sets; $w$-compactness degree; -closed sets; -compactness degree; cardinal inequalities
UR - http://eudml.org/doc/247614
ER -
References
top- Arkhangel'skii A.V., The power of bicompacta with the first axiom of countability, Soviet Math. Dokl. 10 (1969), 951-955. (1969)
- Bella A., Cammaroto F., On the cardinality of Urysohn spaces, Canad. Math. Bull. 31 (2) (1988), 153-158. (1988) Zbl0646.54005MR0942065
- Engelking R., General Topology. Revised and completed edition, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin, 1989. MR1039321
- Hodel R., Cardinal Functions I, in Handbook of Set-Theoretic Topology (K. Kunen and J.E. Vaughan, eds.), Elsevier Science Publishers, B.V., North Holland, 1984, pp. 1-61. Zbl0559.54003MR0776620
- Ishii T., On the Tychonoff functor and -compactness, Topology Appl. 11 (1980), 173-187. (1980) Zbl0441.54012MR0572372
- Pol R., Short proofs of two theorems on cardinality of topological spaces, Bull. Acad. Polon. Sci. Ser,. Math. Astr. Phys. 22 (1974), 1245-1249. (1974) Zbl0295.54004MR0383333
- Stephenson R.M., Jr., Spaces for which the Stone-Weierstrass theorem holds, Trans. Amer. Math. Soc. 133 (1968), 537-546. (1968) Zbl0164.53003MR0227753
- Stephenson R.M., Jr., Product spaces for which the Stone-Weierstrass theorem holds, Proc. Amer. Math. Soc. 21 (1969), 284-288. (1969) MR0250260
- Stephenson R.M., Jr., Pseudocompact and Stone-Weierstrass product spaces, Pacific J. Math. 99 (1) (1982), 159-174. (1982) Zbl0426.54009MR0651493
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.