On the cardinality of functionally Hausdorff spaces
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 4, page 797-801
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFedeli, Alessandro. "On the cardinality of functionally Hausdorff spaces." Commentationes Mathematicae Universitatis Carolinae 37.4 (1996): 797-801. <http://eudml.org/doc/247911>.
@article{Fedeli1996,
abstract = {In this paper two new cardinal functions are introduced and investigated. In particular the following two theorems are proved:
(i) If $\,X$ is a functionally Hausdorff space then $|X| \le 2^\{fs(X) \psi _\{\tau \}(X)\}$;
(ii) Let $X$ be a functionally Hausdorff space with $fs(X) \le \kappa $. Then there is a subset $S$ of $X$ such that $|S| \le 2^\{\kappa \}$ and $X = \bigcup \lbrace cl_\{\tau \theta \}(A): A \in [S]^\{\le \kappa \} \rbrace $.},
author = {Fedeli, Alessandro},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {cardinal functions; $\tau $-pseudocharacter; functional spread; -pseudocharacter; functional spread; cardinal characteristics of a topological space},
language = {eng},
number = {4},
pages = {797-801},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the cardinality of functionally Hausdorff spaces},
url = {http://eudml.org/doc/247911},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Fedeli, Alessandro
TI - On the cardinality of functionally Hausdorff spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 4
SP - 797
EP - 801
AB - In this paper two new cardinal functions are introduced and investigated. In particular the following two theorems are proved:
(i) If $\,X$ is a functionally Hausdorff space then $|X| \le 2^{fs(X) \psi _{\tau }(X)}$;
(ii) Let $X$ be a functionally Hausdorff space with $fs(X) \le \kappa $. Then there is a subset $S$ of $X$ such that $|S| \le 2^{\kappa }$ and $X = \bigcup \lbrace cl_{\tau \theta }(A): A \in [S]^{\le \kappa } \rbrace $.
LA - eng
KW - cardinal functions; $\tau $-pseudocharacter; functional spread; -pseudocharacter; functional spread; cardinal characteristics of a topological space
UR - http://eudml.org/doc/247911
ER -
References
top- Engelking R., General Topology. Revised and completed edition, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). (1989) MR1039321
- Fedeli A., Two cardinal inequalities for functionally Hausdorff spaces, Comment. Math. Univ. Carolinae 35.2 (1994), 365-369. (1994) Zbl0807.54006MR1286584
- Fedeli A., Watson S., Elementary Submodels in Topology, submitted.
- Hodel R., Cardinal Functions I, Handbook of Set-theoretic Topology, (Kunen K. and Vaughan J.E., eds.) Elsevier Science Publishers, B.V., North Holland, 1984, pp. 1-61. Zbl0559.54003MR0776620
- Ishii T., On the Tychonoff functor and w-compactness, Topology Appl. 11 (1980), 175-187. (1980) Zbl0441.54012MR0572372
- Ishii T., The Tychonoff functor and related topics, Topics in General Topology, (Morita K. and Nagata J., eds.) Elsevier Science Publishers, B.V., North Holland, 1989, pp. 203-243. Zbl0763.54009MR1053197
- Juhàsz I., Cardinal functions in topology-ten years later, Mathematical Centre Tracts 123, Amsterdam, 1980. MR0576927
- Kočinac Lj., Some cardinal functions on Urysohn spaces, to appear. MR1385570
- Kočinac Lj., On the cardinality of Urysohn and -closed spaces, Proc. of the Mathematical Conference in Priština, 1994, pp. 105-111. MR1466279
- Schröder J., Urysohn cellularity and Urysohn spread, Math. Japonicae 38 (1993), 1129-1133. (1993) MR1250339
- Shapirovskii B., On discrete subspaces of topological spaces. Weight, tightness and Suslin number, Soviet Math. Dokl. 13 (1972), 215-219. (1972)
- Sun S.H., Choo K.G., Some new cardinal inequalities involving a cardinal function less than the spread and the density, Comment. Math. Univ. Carolinae 31.2 (1990), 395-401. (1990) Zbl0717.54002MR1077911
- Watson S., The construction of topological spaces: Planks and Resolutions, Recent Progress in General Topology, (Hušek M. and Van Mill J., eds.) Elsevier Science Publishers, B.V., North Holland, 1992, pp. 675-757. Zbl0803.54001MR1229141
- Watson S., The Lindelöf number of a power: an introduction to the use of elementary submodels in general topology, Topology Appl. 58 (1994), 25-34. (1994) Zbl0836.54004MR1280708
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.