Notes on approximation in the Musielak-Orlicz spaces of vector multifunctions

Andrzej Kasperski

Commentationes Mathematicae Universitatis Carolinae (1994)

  • Volume: 35, Issue: 1, page 81-93
  • ISSN: 0010-2628

Abstract

top
We introduce the spaces M Y , ϕ 1 , M Y , ϕ o , n , M ˜ Y , ϕ o and M Y , 𝐝 , ϕ o of multifunctions. We prove that the spaces M Y , ϕ 1 and M Y , 𝐝 , ϕ o are complete. Also, we get some convergence theorems.

How to cite

top

Kasperski, Andrzej. "Notes on approximation in the Musielak-Orlicz spaces of vector multifunctions." Commentationes Mathematicae Universitatis Carolinae 35.1 (1994): 81-93. <http://eudml.org/doc/247625>.

@article{Kasperski1994,
abstract = {We introduce the spaces $M^\{1\}_\{Y,\varphi \}$, $M^\{o,n\}_\{Y,\varphi \}$, $\tilde\{M\}^\{o\}_\{Y,\varphi \}$ and $M^\{o\}_\{Y,\mathbf \{d\},\varphi \}$ of multifunctions. We prove that the spaces $M^\{1\}_\{Y,\varphi \}$ and $M^\{o\}_\{Y,\mathbf \{d\},\varphi \}$ are complete. Also, we get some convergence theorems.},
author = {Kasperski, Andrzej},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Musielak-Orlicz space; multifunction; modular space of multifunctions; integral operator; modular approximation; Musielak-Orlicz space; modular space of multifunctions; integral operator; modular approximation; spaces of multifunctions; convergence theorems},
language = {eng},
number = {1},
pages = {81-93},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Notes on approximation in the Musielak-Orlicz spaces of vector multifunctions},
url = {http://eudml.org/doc/247625},
volume = {35},
year = {1994},
}

TY - JOUR
AU - Kasperski, Andrzej
TI - Notes on approximation in the Musielak-Orlicz spaces of vector multifunctions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 1
SP - 81
EP - 93
AB - We introduce the spaces $M^{1}_{Y,\varphi }$, $M^{o,n}_{Y,\varphi }$, $\tilde{M}^{o}_{Y,\varphi }$ and $M^{o}_{Y,\mathbf {d},\varphi }$ of multifunctions. We prove that the spaces $M^{1}_{Y,\varphi }$ and $M^{o}_{Y,\mathbf {d},\varphi }$ are complete. Also, we get some convergence theorems.
LA - eng
KW - Musielak-Orlicz space; multifunction; modular space of multifunctions; integral operator; modular approximation; Musielak-Orlicz space; modular space of multifunctions; integral operator; modular approximation; spaces of multifunctions; convergence theorems
UR - http://eudml.org/doc/247625
ER -

References

top
  1. Kasperski A., Modular approximation in ϕ by a filtered family of dist-sublinear operators and dist-convex operators, Mathematica Japonica 38 (1993), 119-125. (1993) MR1204190
  2. Kasperski A., Notes on approximation in the Musielak-Orlicz spaces of multifunctions, Commentationes Math., in print. 
  3. Musielak J., Modular approximation by a filtered family of linear operators, Functional Analysis and Approximation, Proc. Conf. Oberwolfach, August 9-16, 1980; Birkhäuser Verlag, Basel, 1981, pp. 99-110. Zbl0471.46017MR0650267
  4. Musielak J., Orlicz spaces and Modular spaces, Lecture Notes in Mathematics Vol. 1034, Springer-Verlag, Berlin, 1983. Zbl0557.46020MR0724434
  5. Wisła M., On completeness of Musielak-Orlicz spaces, Chin. Ann. of Math. 10B(3) (1989), 292-300. (1989) MR1027668

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.