The area formula for -mappings
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 2, page 291-298
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMalý, Jan. "The area formula for $W^{1,n}$-mappings." Commentationes Mathematicae Universitatis Carolinae 35.2 (1994): 291-298. <http://eudml.org/doc/247641>.
@article{Malý1994,
abstract = {Let $f$ be a mapping in the Sobolev space $W^\{1,n\}(\Omega ,\mathbf \{R\}^n)$. Then the change of variables, or area formula holds for $f$ provided removing from counting into the multiplicity function the set where $f$ is not approximately Hölder continuous. This exceptional set has Hausdorff dimension zero.},
author = {Malý, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Sobolev spaces; change of variables; area formula; Hölder continuity; area formula; change of variables formula; Lusin property (N); -mapping; Gehring oscillation lemma; -Dirichlet integral},
language = {eng},
number = {2},
pages = {291-298},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The area formula for $W^\{1,n\}$-mappings},
url = {http://eudml.org/doc/247641},
volume = {35},
year = {1994},
}
TY - JOUR
AU - Malý, Jan
TI - The area formula for $W^{1,n}$-mappings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 2
SP - 291
EP - 298
AB - Let $f$ be a mapping in the Sobolev space $W^{1,n}(\Omega ,\mathbf {R}^n)$. Then the change of variables, or area formula holds for $f$ provided removing from counting into the multiplicity function the set where $f$ is not approximately Hölder continuous. This exceptional set has Hausdorff dimension zero.
LA - eng
KW - Sobolev spaces; change of variables; area formula; Hölder continuity; area formula; change of variables formula; Lusin property (N); -mapping; Gehring oscillation lemma; -Dirichlet integral
UR - http://eudml.org/doc/247641
ER -
References
top- Bojarski B., Iwaniec T., Analytical foundations of the theory of quasiconformal mapping in , Ann. Acad. Sci. Fenn. Ser. A I. Math. 8 (1983), 257-324. (1983) MR0731786
- Federer H., Geometric Measure Theory, Springer-Verlag, Grundlehren, 1969. Zbl0874.49001MR0257325
- Federer H., Surface area II, Trans. Amer. Math. Soc. 55 (1944), 438-456. (1944) MR0010611
- Feyel D., de la Pradelle A., Hausdorff measures on the Wiener space, Potential Analysis 1,2 (1992), 177-189. (1992) Zbl1081.28500MR1245885
- Giaquinta M., Modica G., Souček J., Area and the area formula, preprint, 1993. MR1293774
- Hedberg L.I., Wolff Th.H., Thin sets in nonlinear potential theory, Ann. Inst. Fourier, Grenoble 33,4 (1983), 161-187. (1983) Zbl0508.31008MR0727526
- Heinonen J., Kilpeläinen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Clarendon Press, 1993. MR1207810
- Malý J., Hölder type quasicontinuity, Potential Analysis 2 (1993), 249-254. (1993) MR1245242
- Malý J., Martio O., Lusin’s condition (N) and mappings of the class , Preprint 153, University of Jyväskylä, 1992.
- Martio O., Ziemer W.P., Lusin's condition (N) and mappings with non-negative Jacobians, Michigan Math. J., to appear. MR1182504
- Meyers N.G., Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166. (1975) Zbl0334.31004MR0367235
- Reshetnyak Yu.G., On the concept of capacity in the theory of functions with generalized derivatives, Sibirsk. Mat. Zh. 10 (1969), 1109-1138. (1969) MR0276487
- Reshetnyak Yu.G., Space Mappings with Bounded Distortion, Transl. Math. Monographs, Amer. Math. Soc., Providence, 1989. Zbl0667.30018MR0994644
- Ziemer W.P., Weakly Differentiable Functions, Graduate Texts in Mathematics 120, Springer-Verlag, 1989. Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.