The area formula for W 1 , n -mappings

Jan Malý

Commentationes Mathematicae Universitatis Carolinae (1994)

  • Volume: 35, Issue: 2, page 291-298
  • ISSN: 0010-2628

Abstract

top
Let f be a mapping in the Sobolev space W 1 , n ( Ω , 𝐑 n ) . Then the change of variables, or area formula holds for f provided removing from counting into the multiplicity function the set where f is not approximately Hölder continuous. This exceptional set has Hausdorff dimension zero.

How to cite

top

Malý, Jan. "The area formula for $W^{1,n}$-mappings." Commentationes Mathematicae Universitatis Carolinae 35.2 (1994): 291-298. <http://eudml.org/doc/247641>.

@article{Malý1994,
abstract = {Let $f$ be a mapping in the Sobolev space $W^\{1,n\}(\Omega ,\mathbf \{R\}^n)$. Then the change of variables, or area formula holds for $f$ provided removing from counting into the multiplicity function the set where $f$ is not approximately Hölder continuous. This exceptional set has Hausdorff dimension zero.},
author = {Malý, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Sobolev spaces; change of variables; area formula; Hölder continuity; area formula; change of variables formula; Lusin property (N); -mapping; Gehring oscillation lemma; -Dirichlet integral},
language = {eng},
number = {2},
pages = {291-298},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The area formula for $W^\{1,n\}$-mappings},
url = {http://eudml.org/doc/247641},
volume = {35},
year = {1994},
}

TY - JOUR
AU - Malý, Jan
TI - The area formula for $W^{1,n}$-mappings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 2
SP - 291
EP - 298
AB - Let $f$ be a mapping in the Sobolev space $W^{1,n}(\Omega ,\mathbf {R}^n)$. Then the change of variables, or area formula holds for $f$ provided removing from counting into the multiplicity function the set where $f$ is not approximately Hölder continuous. This exceptional set has Hausdorff dimension zero.
LA - eng
KW - Sobolev spaces; change of variables; area formula; Hölder continuity; area formula; change of variables formula; Lusin property (N); -mapping; Gehring oscillation lemma; -Dirichlet integral
UR - http://eudml.org/doc/247641
ER -

References

top
  1. Bojarski B., Iwaniec T., Analytical foundations of the theory of quasiconformal mapping in 𝐑 n , Ann. Acad. Sci. Fenn. Ser. A I. Math. 8 (1983), 257-324. (1983) MR0731786
  2. Federer H., Geometric Measure Theory, Springer-Verlag, Grundlehren, 1969. Zbl0874.49001MR0257325
  3. Federer H., Surface area II, Trans. Amer. Math. Soc. 55 (1944), 438-456. (1944) MR0010611
  4. Feyel D., de la Pradelle A., Hausdorff measures on the Wiener space, Potential Analysis 1,2 (1992), 177-189. (1992) Zbl1081.28500MR1245885
  5. Giaquinta M., Modica G., Souček J., Area and the area formula, preprint, 1993. MR1293774
  6. Hedberg L.I., Wolff Th.H., Thin sets in nonlinear potential theory, Ann. Inst. Fourier, Grenoble 33,4 (1983), 161-187. (1983) Zbl0508.31008MR0727526
  7. Heinonen J., Kilpeläinen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Clarendon Press, 1993. MR1207810
  8. Malý J., Hölder type quasicontinuity, Potential Analysis 2 (1993), 249-254. (1993) MR1245242
  9. Malý J., Martio O., Lusin’s condition (N) and mappings of the class W 1 , n , Preprint 153, University of Jyväskylä, 1992. 
  10. Martio O., Ziemer W.P., Lusin's condition (N) and mappings with non-negative Jacobians, Michigan Math. J., to appear. MR1182504
  11. Meyers N.G., Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166. (1975) Zbl0334.31004MR0367235
  12. Reshetnyak Yu.G., On the concept of capacity in the theory of functions with generalized derivatives, Sibirsk. Mat. Zh. 10 (1969), 1109-1138. (1969) MR0276487
  13. Reshetnyak Yu.G., Space Mappings with Bounded Distortion, Transl. Math. Monographs, Amer. Math. Soc., Providence, 1989. Zbl0667.30018MR0994644
  14. Ziemer W.P., Weakly Differentiable Functions, Graduate Texts in Mathematics 120, Springer-Verlag, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.