Frobenius distributions for real quadratic orders

Peter Stevenhagen

Journal de théorie des nombres de Bordeaux (1995)

  • Volume: 7, Issue: 1, page 121-132
  • ISSN: 1246-7405

Abstract

top
We present a density result for the norm of the fundamental unit in a real quadratic order that follows from an equidistribution assumption for the infinite Frobenius elements in the class groups of these orders.

How to cite

top

Stevenhagen, Peter. "Frobenius distributions for real quadratic orders." Journal de théorie des nombres de Bordeaux 7.1 (1995): 121-132. <http://eudml.org/doc/247663>.

@article{Stevenhagen1995,
abstract = {We present a density result for the norm of the fundamental unit in a real quadratic order that follows from an equidistribution assumption for the infinite Frobenius elements in the class groups of these orders.},
author = {Stevenhagen, Peter},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {real quadratic fields; quadratic units; Pell equation; solutions of the Pell equation; integers which are sums of two relatively prime squares; abelian extensions of higher degree},
language = {eng},
number = {1},
pages = {121-132},
publisher = {Université Bordeaux I},
title = {Frobenius distributions for real quadratic orders},
url = {http://eudml.org/doc/247663},
volume = {7},
year = {1995},
}

TY - JOUR
AU - Stevenhagen, Peter
TI - Frobenius distributions for real quadratic orders
JO - Journal de théorie des nombres de Bordeaux
PY - 1995
PB - Université Bordeaux I
VL - 7
IS - 1
SP - 121
EP - 132
AB - We present a density result for the norm of the fundamental unit in a real quadratic order that follows from an equidistribution assumption for the infinite Frobenius elements in the class groups of these orders.
LA - eng
KW - real quadratic fields; quadratic units; Pell equation; solutions of the Pell equation; integers which are sums of two relatively prime squares; abelian extensions of higher degree
UR - http://eudml.org/doc/247663
ER -

References

top
  1. [1] B.D. Beach and H.C. Williams, A numerical investigation of the Diophantine equation x2 - dy2 = -1, Proc. 3rd Southeastern Conf. on Combinatorics, Graph Theory and Computing, 1972, pp. 37-52. Zbl0261.10015MR347729
  2. [2] W. Bosma and P. Stevenhagen, Density computations for real quadratic units, Math. Comp., to appear (1995). Zbl0859.11064MR1344607
  3. [3] H. Cohen and H.W. Lenstra, Jr., Heuristics on class groups of number fields, Number Theory Noordwijkerhout 1983 (H. Jager, ed.), Springer LNM1068, 1984. Zbl0558.12002
  4. [4] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, Oxford University Press, 1938. Zbl0020.29201JFM64.0093.03
  5. [5] T. Nagell, Über die Lösbarkeit der Gleichung x2 - Dy2 = -1, Arkiv för Mat., Astr., o. Fysik23 (1932), no. B/6, 1-5. JFM59.0180.02
  6. [6] L. Rédei, Über die Pellsche Gleichung t2 - du2 = -1, J. reine angew. Math.173 (1935), 193-221. Zbl0012.24602JFM61.0138.02
  7. [7] L. Rédei, Über einige Mittelwertfragen im quadratischen Zahlkörper, J. reine angew. Math.174 (1936), 131-148. Zbl0009.29302
  8. [8] G.J. Rieger, Über die Anzahl der als Summe von zwei Quadraten darstellbaren und in einer primen Restklasse gelegenen Zahlen unterhalb einer positiven Schranke. II, J. reine angew. Math.217 (1965), 200-216. Zbl0141.04305MR174533
  9. [9] A.J. Stephens and H.C. Williams, Some computational results on a problem of Eisenstein, Théorie des Nombres - Number Theory (J. W. M. de Koninck and C. Levesque, eds. ), de Gruyter, 1992, pp. 869-886. Zbl0689.10024MR1024611
  10. [10] P. Stevenhagen, On the 2-power divisibility of certain quadratic class numbers, J. of Number Theory43 (1993), no. (1), 1-19. Zbl0767.11054MR1200803
  11. [11] P. Stevenhagen, The number of real quadratic fields having units of negative norm, Exp. Math.2 (1993), no. (2), 121-136. Zbl0792.11041MR1259426
  12. [12] P. Stevenhagen, On a problem of Eisenstein, Acta Arith., (to appear, 1995). Zbl0851.11058MR1373712

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.