An inequality for the coefficients of a cosine polynomial

Horst Alzer

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 3, page 427-428
  • ISSN: 0010-2628

Abstract

top
We prove: If 1 2 + k = 1 n a k ( n ) cos ( k x ) 0 for all x [ 0 , 2 π ) , then 1 - a k ( n ) 1 2 k 2 n 2 for k = 1 , , n . The constant 1 / 2 is the best possible.

How to cite

top

Alzer, Horst. "An inequality for the coefficients of a cosine polynomial." Commentationes Mathematicae Universitatis Carolinae 36.3 (1995): 427-428. <http://eudml.org/doc/247706>.

@article{Alzer1995,
abstract = {We prove: If \[ \frac\{1\}\{2\}+\sum \_\{k=1\}^\{n\}a\_k(n)\cos (kx)\ge 0 \text\{ for all \} x\in [0,2\pi ), \] then \[ 1-a\_k(n)\ge \frac\{1\}\{2\} \frac\{k^2\}\{n^2\} \text\{ for \} k=1,\dots ,n. \] The constant $1/2$ is the best possible.},
author = {Alzer, Horst},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {cosine polynomials; inequalities; inequality; coefficients; cosine polynomial},
language = {eng},
number = {3},
pages = {427-428},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An inequality for the coefficients of a cosine polynomial},
url = {http://eudml.org/doc/247706},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Alzer, Horst
TI - An inequality for the coefficients of a cosine polynomial
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 3
SP - 427
EP - 428
AB - We prove: If \[ \frac{1}{2}+\sum _{k=1}^{n}a_k(n)\cos (kx)\ge 0 \text{ for all } x\in [0,2\pi ), \] then \[ 1-a_k(n)\ge \frac{1}{2} \frac{k^2}{n^2} \text{ for } k=1,\dots ,n. \] The constant $1/2$ is the best possible.
LA - eng
KW - cosine polynomials; inequalities; inequality; coefficients; cosine polynomial
UR - http://eudml.org/doc/247706
ER -

References

top
  1. DeVore R.A., Saturation of positive convolution operators, J. Approx. Th. 3 (1970), 410-429. (1970) Zbl0243.42024MR0271612
  2. Stark E.L., Über trigonometrische singuläre Faltungsintegrale mit Kernen endlicher Oszillation, Dissertation, TH Aachen, 1970. 
  3. Stark E.L., Inequalities for trigonometric moments and for Fourier coefficients of positive cosine polynomials in approximation, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544-576 (1976), 63-76. (1976) MR0438017
  4. Szegö G., Koeffizientenabschätzungen bei ebenen und räumlichen harmonischen Entwicklungen, Math. Annalen 96 (1926-27), 601-632. (1926-27) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.