An inequality for the coefficients of a cosine polynomial
Commentationes Mathematicae Universitatis Carolinae (1995)
- Volume: 36, Issue: 3, page 427-428
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAlzer, Horst. "An inequality for the coefficients of a cosine polynomial." Commentationes Mathematicae Universitatis Carolinae 36.3 (1995): 427-428. <http://eudml.org/doc/247706>.
@article{Alzer1995,
abstract = {We prove: If \[ \frac\{1\}\{2\}+\sum \_\{k=1\}^\{n\}a\_k(n)\cos (kx)\ge 0 \text\{ for all \} x\in [0,2\pi ), \]
then \[ 1-a\_k(n)\ge \frac\{1\}\{2\} \frac\{k^2\}\{n^2\} \text\{ for \} k=1,\dots ,n. \]
The constant $1/2$ is the best possible.},
author = {Alzer, Horst},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {cosine polynomials; inequalities; inequality; coefficients; cosine polynomial},
language = {eng},
number = {3},
pages = {427-428},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An inequality for the coefficients of a cosine polynomial},
url = {http://eudml.org/doc/247706},
volume = {36},
year = {1995},
}
TY - JOUR
AU - Alzer, Horst
TI - An inequality for the coefficients of a cosine polynomial
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 3
SP - 427
EP - 428
AB - We prove: If \[ \frac{1}{2}+\sum _{k=1}^{n}a_k(n)\cos (kx)\ge 0 \text{ for all } x\in [0,2\pi ), \]
then \[ 1-a_k(n)\ge \frac{1}{2} \frac{k^2}{n^2} \text{ for } k=1,\dots ,n. \]
The constant $1/2$ is the best possible.
LA - eng
KW - cosine polynomials; inequalities; inequality; coefficients; cosine polynomial
UR - http://eudml.org/doc/247706
ER -
References
top- DeVore R.A., Saturation of positive convolution operators, J. Approx. Th. 3 (1970), 410-429. (1970) Zbl0243.42024MR0271612
- Stark E.L., Über trigonometrische singuläre Faltungsintegrale mit Kernen endlicher Oszillation, Dissertation, TH Aachen, 1970.
- Stark E.L., Inequalities for trigonometric moments and for Fourier coefficients of positive cosine polynomials in approximation, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544-576 (1976), 63-76. (1976) MR0438017
- Szegö G., Koeffizientenabschätzungen bei ebenen und räumlichen harmonischen Entwicklungen, Math. Annalen 96 (1926-27), 601-632. (1926-27)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.