Currently displaying 1 – 20 of 31

Showing per page

Order by Relevance | Title | Year of publication

The Complete Monotonicity of a Function Studied by Miller and Moskowitz

Horst Alzer — 2009

Bollettino dell'Unione Matematica Italiana

Let S ( x ) = l o g ( 1 + x ) + 0 1 [ 1 - ( 1 + t 2 ) x ] d t log t and F ( x ) = log 2 - S ( x ) ( 0 < x ) . We prove that F is completely monotonic on ( 0 , ) . This complements a result of Miller and Moskowitz (2006), who proved that F is positive and strictly decreasing on ( 0 , ) . The sequence { S ( k ) } ( k = 1 , 2 , ) plays a role in information theory.

On Ozeki’s inequality for power sums

Horst Alzer — 2000

Czechoslovak Mathematical Journal

Let p ( 0 , 1 ) be a real number and let n 2 be an even integer. We determine the largest value c n ( p ) such that the inequality i = 1 n | a i | p c n ( p ) holds for all real numbers a 1 , ... , a n which are pairwise distinct and satisfy min i j | a i - a j | = 1 . Our theorem completes results of Ozeki, Mitrinović-Kalajdžić, and Russell, who found the optimal value c n ( p ) in the case p > 0 and n odd, and in the case p 1 and n even.

Note on special arithmetic and geometric means

Horst Alzer — 1994

Commentationes Mathematicae Universitatis Carolinae

We prove: If A ( n ) and G ( n ) denote the arithmetic and geometric means of the first n positive integers, then the sequence n n A ( n ) / G ( n ) - ( n - 1 ) A ( n - 1 ) / G ( n - 1 ) ( n 2 ) is strictly increasing and converges to e / 2 , as n tends to .

Two inequalities for series and sums

Horst Alzer — 1995

Mathematica Bohemica

In this paper we refine an inequality for infinite series due to Astala, Gehring and Hayman, and sharpen and extend a Holder-type inequality due to Daykin and Eliezer.

Inequalities for two sine polynomials

Horst AlzerStamatis Koumandos — 2006

Colloquium Mathematicae

We prove: (I) For all integers n ≥ 2 and real numbers x ∈ (0,π) we have α j = 1 n - 1 1 / ( n ² - j ² ) s i n ( j x ) β , with the best possible constant bounds α = (15-√2073)/10240 √(1998-10√2073) = -0.1171..., β = 1/3. (II) The inequality 0 < j = 1 n - 1 ( n ² - j ² ) s i n ( j x ) holds for all even integers n ≥ 2 and x ∈ (0,π), and also for all odd integers n ≥ 3 and x ∈ (0,π - π/n].

A sharp bound for a sine polynomial

Horst AlzerStamatis Koumandos — 2003

Colloquium Mathematicae

We prove that | k = 1 n s i n ( ( 2 k - 1 ) x ) / k | < S i ( π ) = 1 . 8519 . . . for all integers n ≥ 1 and real numbers x. The upper bound Si(π) is best possible. This result refines inequalities due to Fejér (1910) and Lenz (1951).

Diophantine equations involving factorials

Horst AlzerFlorian Luca — 2017

Mathematica Bohemica

We study the Diophantine equations ( k ! ) n - k n = ( n ! ) k - n k and ( k ! ) n + k n = ( n ! ) k + n k , where k and n are positive integers. We show that the first one holds if and only if k = n or ( k , n ) = ( 1 , 2 ) , ( 2 , 1 ) and that the second one holds if and only if k = n .

Page 1 Next

Download Results (CSV)