Linear transforms supporting circular convolution over a commutative ring with identity

Mohamed Mounir Nessibi

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 2, page 395-400
  • ISSN: 0010-2628

Abstract

top
We consider a commutative ring R with identity and a positive integer N . We characterize all the 3-tuples ( L 1 , L 2 , L 3 ) of linear transforms over R N , having the “circular convolution” property, i.eṡuch that x * y = L 3 ( L 1 ( x ) L 2 ( y ) ) for all x , y R N .

How to cite

top

Nessibi, Mohamed Mounir. "Linear transforms supporting circular convolution over a commutative ring with identity." Commentationes Mathematicae Universitatis Carolinae 36.2 (1995): 395-400. <http://eudml.org/doc/247711>.

@article{Nessibi1995,
abstract = {We consider a commutative ring $\operatorname\{R\}$ with identity and a positive integer $\operatorname\{N\}$. We characterize all the 3-tuples $(\operatorname\{L\}_1,\operatorname\{L\}_2,\operatorname\{L\}_3)$ of linear transforms over $\operatorname\{R\}^\{\operatorname\{N\}\}$, having the “circular convolution” property, i.eṡuch that $x\ast y=\operatorname\{L\}_3(\operatorname\{L\}_1 (x)\otimes \operatorname\{L\}_2 (y))$ for all $x,y \in \operatorname\{R\}^\{\operatorname\{N\}\}$.},
author = {Nessibi, Mohamed Mounir},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {circular convolution property; Fourier transformation; circular convolution; commutative ring; linear transformations},
language = {eng},
number = {2},
pages = {395-400},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Linear transforms supporting circular convolution over a commutative ring with identity},
url = {http://eudml.org/doc/247711},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Nessibi, Mohamed Mounir
TI - Linear transforms supporting circular convolution over a commutative ring with identity
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 2
SP - 395
EP - 400
AB - We consider a commutative ring $\operatorname{R}$ with identity and a positive integer $\operatorname{N}$. We characterize all the 3-tuples $(\operatorname{L}_1,\operatorname{L}_2,\operatorname{L}_3)$ of linear transforms over $\operatorname{R}^{\operatorname{N}}$, having the “circular convolution” property, i.eṡuch that $x\ast y=\operatorname{L}_3(\operatorname{L}_1 (x)\otimes \operatorname{L}_2 (y))$ for all $x,y \in \operatorname{R}^{\operatorname{N}}$.
LA - eng
KW - circular convolution property; Fourier transformation; circular convolution; commutative ring; linear transformations
UR - http://eudml.org/doc/247711
ER -

References

top
  1. Cikánek P., SCC matice nad komutativnim okruhem, PhD-Thesis, Section 5, pp. 63-81, Brno, 1992. 
  2. Hasse H., Number Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1980. Zbl0991.11001MR0562104
  3. Skula L., Linear transforms and convolution, Math. Slovaca 37:1 (1987), 9-30. (1987) Zbl0622.65143MR0899012
  4. Skula L., Linear transforms supporting circular convolution on residue class rings, Math. Slovaca 39:4 (1989), 377-390. (1989) Zbl0778.11073MR1094761
  5. Nussbaumer H.T., Fast Fourier transform and convolution algorithms, Springer-Verlag, Berlin-Heidelberg-New York, 1981. Zbl0599.65098MR0606376
  6. Zarisky O., Samuel P., Commutative Algebra, Vol. 1, 1958, D. van Nostrand, Inc., Princeton, New Jersey, London. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.