Universal minimal dynamical system for reals

Sławomir Turek

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 2, page 371-375
  • ISSN: 0010-2628

Abstract

top
Our aim is to give a description of S ( ) and M ( ) , the phase space of universal ambit and the phase space of universal minimal dynamical system for the group of real numbers with the usual topology.

How to cite

top

Turek, Sławomir. "Universal minimal dynamical system for reals." Commentationes Mathematicae Universitatis Carolinae 36.2 (1995): 371-375. <http://eudml.org/doc/247714>.

@article{Turek1995,
abstract = {Our aim is to give a description of $S(\mathbb \{R\})$ and $M(\mathbb \{R\})$, the phase space of universal ambit and the phase space of universal minimal dynamical system for the group of real numbers with the usual topology.},
author = {Turek, Sławomir},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {ambit; Samuel compactification; minimal dynamical system; Samuel compactification; universal ambit; minimal dynamical system},
language = {eng},
number = {2},
pages = {371-375},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Universal minimal dynamical system for reals},
url = {http://eudml.org/doc/247714},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Turek, Sławomir
TI - Universal minimal dynamical system for reals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 2
SP - 371
EP - 375
AB - Our aim is to give a description of $S(\mathbb {R})$ and $M(\mathbb {R})$, the phase space of universal ambit and the phase space of universal minimal dynamical system for the group of real numbers with the usual topology.
LA - eng
KW - ambit; Samuel compactification; minimal dynamical system; Samuel compactification; universal ambit; minimal dynamical system
UR - http://eudml.org/doc/247714
ER -

References

top
  1. Arkhangel'skii A.V., Ponomarev V.I., Osnovy obshcheĭ topologii v zadachakh i uprazhneniyakh, Nauka, Moskva, 1974. MR0445439
  2. Balcar B., Błaszczyk A., On minimal dynamical systems on Boolean algebras, Comment. Math. Univ. Carolinae 31 (1990), 7-11. (1990) MR1056164
  3. Brook R., A construction of the greatest ambit, Math. Systems Theory 4 (1970), 243-248. (1970) MR0267038
  4. Engelking R., General Topology, PWN, Warszawa, 1977. Zbl0684.54001MR0500780
  5. Gutek A., A Generalization of Solenoids, Colloquia Math. Soc. J. Bolyai 23 (Proceedings of Colloquium on Topology, Budapest 1978), Amsterdam 1980, 547-554. Zbl0449.54035MR0588803
  6. de Vries J., Elements of Topological Dynamics, Kluwer Academic Publishers, DordrechtBoston-London, 1993. Zbl0783.54035MR1249063

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.