Realcompactification of frames

Nizar Marcus

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 2, page 347-356
  • ISSN: 0010-2628

Abstract

top
We give a construction of Wallman-type realcompactifications of a frame L by considering regular sub σ -frames the join of which generates L . In particular, we show that the largest such regular sub σ -frame gives rise to the universal realcompactification of L .

How to cite

top

Marcus, Nizar. "Realcompactification of frames." Commentationes Mathematicae Universitatis Carolinae 36.2 (1995): 347-356. <http://eudml.org/doc/247722>.

@article{Marcus1995,
abstract = {We give a construction of Wallman-type realcompactifications of a frame $L$ by considering regular sub $\sigma $-frames the join of which generates $L$. In particular, we show that the largest such regular sub $\sigma $-frame gives rise to the universal realcompactification of $L$.},
author = {Marcus, Nizar},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {frame; $\sigma $-frame; realcompactification; regular sigma-frame; realcompactification; realcompactness},
language = {eng},
number = {2},
pages = {347-356},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Realcompactification of frames},
url = {http://eudml.org/doc/247722},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Marcus, Nizar
TI - Realcompactification of frames
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 2
SP - 347
EP - 356
AB - We give a construction of Wallman-type realcompactifications of a frame $L$ by considering regular sub $\sigma $-frames the join of which generates $L$. In particular, we show that the largest such regular sub $\sigma $-frame gives rise to the universal realcompactification of $L$.
LA - eng
KW - frame; $\sigma $-frame; realcompactification; regular sigma-frame; realcompactification; realcompactness
UR - http://eudml.org/doc/247722
ER -

References

top
  1. Banaschewski B., Gilmour C.R.A., Stone-Čech compactification and dimension theory for regular σ -frames, J. London Math. Soc. 39 (1989), 1-8. (1989) Zbl0675.06005MR0989914
  2. Gilmour C.R.A., Realcompactifications through zero-set spaces, Quaestiones Math. 6 (1983), 73-95. (1983) Zbl0521.54012MR0700241
  3. Gilmour C.R.A., Realcompact spaces and regular σ -frames, Math. Proc. Camb. Phil. Soc. 96 (1984), 73-79. (1984) Zbl0547.54021MR0743702
  4. Johnstone P.T., Stone Spaces, Cambridge Studies in Advanced Math. 3, Cambridge Univ. Press, 1982. Zbl0586.54001MR0698074
  5. Madden J., Vermeer J., Lindelöf locales and realcompactness, Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480. (1986) Zbl0603.54021MR0830360
  6. G. Schlitt, -Compact frames and applications, Doctoral thesis, McMaster University, 1990. MR1118300

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.