Borel matrix
Commentationes Mathematicae Universitatis Carolinae (1995)
- Volume: 36, Issue: 2, page 401-415
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topWeber, Michel. "Borel matrix." Commentationes Mathematicae Universitatis Carolinae 36.2 (1995): 401-415. <http://eudml.org/doc/247725>.
@article{Weber1995,
abstract = {We study the Borel summation method. We obtain a general sufficient condition for a given matrix $A$ to have the Borel property. We deduce as corollaries, earlier results obtained by G. M“uller and J.D. Hill. Our result is expressed in terms belonging to the theory of Gaussian processes. We show that this result cannot be extended to the study of the Borel summation method on arbitrary dynamical systems. However, in the $L^p$-setting, we establish necessary conditions of the same kind by using Bourgain’s entropy criterion.},
author = {Weber, Michel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Borel matrix; almost sure convergence; GB and GC sets; Gaussian processes; ergodic theorem; Borel matrix; Borel summation; Bourgain's entropy criterion},
language = {eng},
number = {2},
pages = {401-415},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Borel matrix},
url = {http://eudml.org/doc/247725},
volume = {36},
year = {1995},
}
TY - JOUR
AU - Weber, Michel
TI - Borel matrix
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 2
SP - 401
EP - 415
AB - We study the Borel summation method. We obtain a general sufficient condition for a given matrix $A$ to have the Borel property. We deduce as corollaries, earlier results obtained by G. M“uller and J.D. Hill. Our result is expressed in terms belonging to the theory of Gaussian processes. We show that this result cannot be extended to the study of the Borel summation method on arbitrary dynamical systems. However, in the $L^p$-setting, we establish necessary conditions of the same kind by using Bourgain’s entropy criterion.
LA - eng
KW - Borel matrix; almost sure convergence; GB and GC sets; Gaussian processes; ergodic theorem; Borel matrix; Borel summation; Bourgain's entropy criterion
UR - http://eudml.org/doc/247725
ER -
References
top- Beck J., Chen W., Irregularities of distribution, Cambridge Univ. Press, 1987. Zbl1156.11029MR0903025
- Beeckmann W., Zeller K., Theorie der Limitierungsverfahren 2, Aufl. Erg. Math. Grenzeb., Springer Verlag, 1970. MR0118990
- Bellow A., Losert V., On sequences of density zero in ergodic theory, Proc. Kakutani Conf., 1984. Zbl0587.28013MR0737387
- Bourgain J., Almost sure convergence and bounded entropy, Israel J. Math. 63 (1988), 79-95. (1988) Zbl0677.60042MR0959049
- Conze J.P., Convergence des moyennes ergodiques pour des sous-suites, Bull. Soc. Math. France 35 (1973), 7-15. (1973) Zbl0285.28017MR0453975
- Cooke R.G., Infinite matrices and sequence spaces, Macmillan, London, 1950. Zbl0132.28901MR0040451
- Del Junco A., Rosenblatt J., Counterexamples in Ergodic Theory and Number Theory, Math. Ann. 245 (1979), 185-197. (1979) Zbl0398.28021MR0553340
- Dudley R.M., The size of compact subsets of Hilbert space and continuity of Gaussian processes, J. Functional Analysis 1 (1967), 290-330. (1967) MR0220340
- Grillenberger C., Krengel U., On matrix summation and the pointwise ergodic theorem, Lecture Notes in Math., Springer 532 (1976), 113-124. (1976) Zbl0331.28010MR0486411
- Garsia A., Rodemich E. and Rumsey H. Jr., A real variable lemma and continuity of paths of some Gaussian processes, Indiana Univ. Math. (1970), 565-578. (1970)
- Hill J.D., Remarks on the Borel property, Pacific J. Math. 4 (1954), 227-242. (1954) Zbl0057.29301MR0062244
- Krengel U., Ergodic Theorems, W. de Gruyter, 1989. Zbl0649.47042MR0797411
- Kuipers L., Niederreiter H., Uniform Distribution of Sequences, J. Wiley Ed., 1971. Zbl0568.10001MR0419394
- Müller G., Sätze über Folgen auf kompakten Raümen, Monatsheft. Math. 67 (1963), 436-451. (1963) MR0158199
- Peyerimhoff A., Lectures on Summability, Lecture Notes in Math., Springer 107 (1969). (1969) Zbl0182.08401MR0463744
- Philipp W., Über einen Satz von Davenport-Erdös-Le Veque, Monatsheft Math. 68 (1964), 52-58. (1964) MR0162784
- Schneider D., Weber M., Une remarque sur un Théorème de Bourgain, Séminaire de Probabilités XXVII Lectures Notes in Math., Springer 1557 (1993), 202-206. (1993) Zbl0799.60035MR1308565
- Talagrand M., Regularity of Gaussian processes, Acta. Math. 159 (1987), 99-149. (1987) Zbl0712.60044MR0906527
- Weber M., Une version fonctionnelle du Théorème ergodique ponctuel, Comptes Rendus Acad. Sci. Paris, Sér. I 311 (1990), 131-133. (1990) Zbl0739.28007MR1065444
- Weber M., Méthodes de sommation matricielles, Comptes Rendus Acad. Sci. Paris, Sér. I 315 (1992), 759-764. (1992) Zbl0768.40002MR1184897
- Weber M., GC sets, Stein's elements and matrix summation methods, Prépublication IRMA no 027, Université de Strasbourg, 1993.
- Weber M., GB and GC sets in ergodic theory, IXth Conference on Probability in Banach Spaces, Sandberg, August 1993, Denmark, Progress in Prob. V, Birkhauser, t. 35, 1994. Zbl0808.28011MR1308514
- Weber M., Coupling of the GB set property for ergodic averages, to appear in J. Theoretic. Prob. (1995), 1993. Zbl0851.60037MR1371072
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.