Convergence des moyennes ergodiques pour des sous-suites

Jean-Pierre Conze

Mémoires de la Société Mathématique de France (1973)

  • Volume: 35, page 7-15
  • ISSN: 0249-633X

How to cite

top

Conze, Jean-Pierre. "Convergence des moyennes ergodiques pour des sous-suites." Mémoires de la Société Mathématique de France 35 (1973): 7-15. <http://eudml.org/doc/94655>.

@article{Conze1973,
author = {Conze, Jean-Pierre},
journal = {Mémoires de la Société Mathématique de France},
language = {fre},
pages = {7-15},
publisher = {Société mathématique de France},
title = {Convergence des moyennes ergodiques pour des sous-suites},
url = {http://eudml.org/doc/94655},
volume = {35},
year = {1973},
}

TY - JOUR
AU - Conze, Jean-Pierre
TI - Convergence des moyennes ergodiques pour des sous-suites
JO - Mémoires de la Société Mathématique de France
PY - 1973
PB - Société mathématique de France
VL - 35
SP - 7
EP - 15
LA - fre
UR - http://eudml.org/doc/94655
ER -

References

top
  1. [1] BRUNEL (A.), KEANE (M.). — Ergodic theorems for operators sequences, Z. Wahr., t. 12, 1969, p. 231-240. Zbl0187.00904MR42 #3831
  2. [2] CHUNG (K. L.). — A course in probability theory. — Harcourt, Brace and World, 1968. Zbl0159.45701MR37 #4842
  3. [3] FRIEDMAN (N. A.). — Introduction to ergodic theory. — New York, Van Nostrand Reinhold Company, 1970 (Mathematical Studies, 29). Zbl0212.40004MR55 #8310
  4. [4] FRIEDMAN (N. A.), ORNSTEIN (D.). — On mixing and partial mixing, 1971 (non publié). 
  5. [5] FURSTENBERG (H.). — Disjointness in ergodic theory ..., Math System Theory, t. 1, 1967, p. 1-50. Zbl0146.28502MR35 #4369
  6. [6] GARSIA (A. M.). — Topics in almost everywhere convergence. — Chicago, Markham publ. Comp., 1970 (Lectures in advanced Mathematics, 4). Zbl0198.38401MR41 #5869
  7. [7] HALMOS (P. R.). — Lectures in ergodic theory. — Tokyo, The Mathematical Society of Japan, 1956 (Publications of the Mathematical Society of Japan, 3). Zbl0073.09302MR20 #3958
  8. [8] HANSEL (G.), RAOULT (J.-P.). — Ergodicité, uniformité et unique ergodicité (à paraître). Zbl0275.28017
  9. [9] JEWETT (R.). — The prevalence of uniquely ergodic systems, J. Math. and Mech., t. 19, 1970, p. 717-729. Zbl0192.40601MR40 #5824
  10. [10] JONES (Lee K.). — A mean ergodic theorem for weakly mixing operators, Adv. in Math., t. 7, 1971, p. 211-216. Zbl0221.47007MR44 #2908
  11. [11] KRENGEL (U.). — On the individual ergodic theorem for subsequences, Annals of math. Statistics, t. 42, 1971, p. 1091-1095. Zbl0216.09603MR44 #405
  12. [12] KRIEGER (W.). — On unique ergodicity, Ohio State University. Zbl0262.28013
  13. En ce qui concerne le §3, mentionnons également deux articles dont nous avons eu connaissance depuis la rédaction de ce travail en juin 1972 : 
  14. KAMAE (T.). — Subsequences of normal sequences, preprint, Osaka City University. 
  15. DENKER (M.). — On strict ergodicity, à paraître dans Ann. of Math. Stat.. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.