Topological properties of the solution set of integrodifferential inclusions
Evgenios P. Avgerinos; Nikolaos S. Papageorgiou
Commentationes Mathematicae Universitatis Carolinae (1995)
- Volume: 36, Issue: 3, page 429-442
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAvgerinos, Evgenios P., and Papageorgiou, Nikolaos S.. "Topological properties of the solution set of integrodifferential inclusions." Commentationes Mathematicae Universitatis Carolinae 36.3 (1995): 429-442. <http://eudml.org/doc/247749>.
@article{Avgerinos1995,
abstract = {In this paper we examine nonlinear integrodifferential inclusions in $\mathbb \{R\}^N$. For the nonconvex problem, we show that the solution set is a retract of the Sobolev space $W^\{1,1\}(T,\{\mathbb \{R\}^N\})$ and the retraction can be chosen to depend continuously on a parameter $\lambda $. Using that result we show that the solution multifunction admits a continuous selector. For the convex problem we show that the solution set is a retract of $C(T,\{\mathbb \{R\}^N\})$. Finally we prove some continuous dependence results.},
author = {Avgerinos, Evgenios P., Papageorgiou, Nikolaos S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {retract; absolute retract; path-connected; Vietoris continuous; $h$-continuous; orientor field; integrodifferential inclusion; retract; continuous selector},
language = {eng},
number = {3},
pages = {429-442},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Topological properties of the solution set of integrodifferential inclusions},
url = {http://eudml.org/doc/247749},
volume = {36},
year = {1995},
}
TY - JOUR
AU - Avgerinos, Evgenios P.
AU - Papageorgiou, Nikolaos S.
TI - Topological properties of the solution set of integrodifferential inclusions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 3
SP - 429
EP - 442
AB - In this paper we examine nonlinear integrodifferential inclusions in $\mathbb {R}^N$. For the nonconvex problem, we show that the solution set is a retract of the Sobolev space $W^{1,1}(T,{\mathbb {R}^N})$ and the retraction can be chosen to depend continuously on a parameter $\lambda $. Using that result we show that the solution multifunction admits a continuous selector. For the convex problem we show that the solution set is a retract of $C(T,{\mathbb {R}^N})$. Finally we prove some continuous dependence results.
LA - eng
KW - retract; absolute retract; path-connected; Vietoris continuous; $h$-continuous; orientor field; integrodifferential inclusion; retract; continuous selector
UR - http://eudml.org/doc/247749
ER -
References
top- Avgerinos E.P., On the existence of solutions for Volterra integrable inclusions in Banach spaces, Jour. Appl. Math. and Stoch. Anal. 6 (1993), 261-270. (1993) MR1238603
- Bressan A., Cellina A., Fryszkowski A., A class of absolute retracts in spaces of integrable functions, Proc. Amer. Math. Soc. 112 (1991), 413-418. (1991) Zbl0747.34014MR1045587
- Cellina A., On the set of solutions to Lipschitzian differential inclusions, Diff. and Integral Equations 1 (1988), 495-500. (1988) Zbl0723.34009MR0945823
- DeBlasi F.S., Myjak J., On the solution set for differential inclusions, Bull. Pol. Acad. Sci. 33 (1985), 17-23. (1985)
- DeBlasi F.S., Myjak J., On continuous approximations for multifunctions, Pacific Journal of Math. 123 (1986), 9-31. (1986) MR0834135
- DeBlasi F.S., Pianigiani G., Staicu V., On the Solution Sets of Some Nonconvex Hyperbolic Differential Inclusions, Università degli Studi di Roma, Prepr. 117, Oct. 1992.
- Dugundji J., Topology, Allyn and Bacon Inc., Boston, 1966. Zbl0397.54003MR0193606
- Gorniewicz L., On the solution set of differential inclusions, JMAA 113 (1986), 235-247. (1986) MR0826673
- Hiai F., Umegaki H., Integrals conditional expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. (1977) Zbl0368.60006MR0507504
- Himmelberg C., Van Fleck F., A note on the solution sets of differential inclusions, Rocky Mountain J. Math. 12 (1982), 621-625. (1982) MR0683856
- Klein E., Thompson A., Theory of Correspondences, Wiley, New York, 1984. Zbl0556.28012MR0752692
- Kuratowski K., Topology II, Academic Press, London, 1966. MR0217751
- Levin V., Borel sections of many valued maps, Siberian Math. J. 19 (1979), 434-438. (1979) Zbl0409.54048
- Nadler S.B., Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-483. (1969) MR0254828
- Pachpatte B.G., A note on Gronwall-Bellman inequality, J. Math. A.A. 44 (1973), 758-762. (1973) Zbl0274.45011MR0335721
- Papageorgiou N.S., Convergence theorems for Banach space valued integrable multifunctions, Intern. J. Math. Sci. 10 (1987), 433-442. (1987) Zbl0619.28009MR0896595
- Papageorgiou N.S., On measurable multifunctions with applications to random multivalued equations, Math. Japonica 32 (1987), 437-464. (1987) Zbl0634.28005MR0914749
- Papageorgiou N.S., Decomposable sets in the Lebesgue-Bochner spaces, Comment. Math. Univ. Sancti Pauli 37 (1988), 49-62. (1988) Zbl0679.46032MR0942305
- Papageorgiou N.S., Existence of solutions for integrodifferential inclusions in Banach spaces, Comment. Math. Univ. Carolinae 32 (1991), 687-696. (1991) Zbl0746.34035MR1159815
- Ricceri B., Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes, Atti. Acad. Naz. Linci. U. Sci. Fiz. Math. Nat. 81 (1987), 283-286. (1987) Zbl0666.47030MR0999821
- Rybinski L., A fixed point approach in the study of the solution sets of Lipschitzian functional-differential inclusions, JMAA 160 (1991), 24-46. (1991) Zbl0735.34016MR1124074
- Staicu V., On a non-convex hyperbolic differential inclusion, Proc. Edinb. Math. Soc., in press. Zbl0769.34018
- Tsukada M., Convergence of best approximations in a smooth Banach space, Journal of Approx. Theory 40 (1984), 301-309. (1984) Zbl0545.41042MR0740641
- Wagner D., Surveys of measurable selection theorems, SIAM J. Control. Optim. 15 (1977), 857-903. (1977) MR0486391
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.