Topological properties of the solution set of integrodifferential inclusions

Evgenios P. Avgerinos; Nikolaos S. Papageorgiou

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 3, page 429-442
  • ISSN: 0010-2628

Abstract

top
In this paper we examine nonlinear integrodifferential inclusions in N . For the nonconvex problem, we show that the solution set is a retract of the Sobolev space W 1 , 1 ( T , N ) and the retraction can be chosen to depend continuously on a parameter λ . Using that result we show that the solution multifunction admits a continuous selector. For the convex problem we show that the solution set is a retract of C ( T , N ) . Finally we prove some continuous dependence results.

How to cite

top

Avgerinos, Evgenios P., and Papageorgiou, Nikolaos S.. "Topological properties of the solution set of integrodifferential inclusions." Commentationes Mathematicae Universitatis Carolinae 36.3 (1995): 429-442. <http://eudml.org/doc/247749>.

@article{Avgerinos1995,
abstract = {In this paper we examine nonlinear integrodifferential inclusions in $\mathbb \{R\}^N$. For the nonconvex problem, we show that the solution set is a retract of the Sobolev space $W^\{1,1\}(T,\{\mathbb \{R\}^N\})$ and the retraction can be chosen to depend continuously on a parameter $\lambda $. Using that result we show that the solution multifunction admits a continuous selector. For the convex problem we show that the solution set is a retract of $C(T,\{\mathbb \{R\}^N\})$. Finally we prove some continuous dependence results.},
author = {Avgerinos, Evgenios P., Papageorgiou, Nikolaos S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {retract; absolute retract; path-connected; Vietoris continuous; $h$-continuous; orientor field; integrodifferential inclusion; retract; continuous selector},
language = {eng},
number = {3},
pages = {429-442},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Topological properties of the solution set of integrodifferential inclusions},
url = {http://eudml.org/doc/247749},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Avgerinos, Evgenios P.
AU - Papageorgiou, Nikolaos S.
TI - Topological properties of the solution set of integrodifferential inclusions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 3
SP - 429
EP - 442
AB - In this paper we examine nonlinear integrodifferential inclusions in $\mathbb {R}^N$. For the nonconvex problem, we show that the solution set is a retract of the Sobolev space $W^{1,1}(T,{\mathbb {R}^N})$ and the retraction can be chosen to depend continuously on a parameter $\lambda $. Using that result we show that the solution multifunction admits a continuous selector. For the convex problem we show that the solution set is a retract of $C(T,{\mathbb {R}^N})$. Finally we prove some continuous dependence results.
LA - eng
KW - retract; absolute retract; path-connected; Vietoris continuous; $h$-continuous; orientor field; integrodifferential inclusion; retract; continuous selector
UR - http://eudml.org/doc/247749
ER -

References

top
  1. Avgerinos E.P., On the existence of solutions for Volterra integrable inclusions in Banach spaces, Jour. Appl. Math. and Stoch. Anal. 6 (1993), 261-270. (1993) MR1238603
  2. Bressan A., Cellina A., Fryszkowski A., A class of absolute retracts in spaces of integrable functions, Proc. Amer. Math. Soc. 112 (1991), 413-418. (1991) Zbl0747.34014MR1045587
  3. Cellina A., On the set of solutions to Lipschitzian differential inclusions, Diff. and Integral Equations 1 (1988), 495-500. (1988) Zbl0723.34009MR0945823
  4. DeBlasi F.S., Myjak J., On the solution set for differential inclusions, Bull. Pol. Acad. Sci. 33 (1985), 17-23. (1985) 
  5. DeBlasi F.S., Myjak J., On continuous approximations for multifunctions, Pacific Journal of Math. 123 (1986), 9-31. (1986) MR0834135
  6. DeBlasi F.S., Pianigiani G., Staicu V., On the Solution Sets of Some Nonconvex Hyperbolic Differential Inclusions, Università degli Studi di Roma, Prepr. 117, Oct. 1992. 
  7. Dugundji J., Topology, Allyn and Bacon Inc., Boston, 1966. Zbl0397.54003MR0193606
  8. Gorniewicz L., On the solution set of differential inclusions, JMAA 113 (1986), 235-247. (1986) MR0826673
  9. Hiai F., Umegaki H., Integrals conditional expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. (1977) Zbl0368.60006MR0507504
  10. Himmelberg C., Van Fleck F., A note on the solution sets of differential inclusions, Rocky Mountain J. Math. 12 (1982), 621-625. (1982) MR0683856
  11. Klein E., Thompson A., Theory of Correspondences, Wiley, New York, 1984. Zbl0556.28012MR0752692
  12. Kuratowski K., Topology II, Academic Press, London, 1966. MR0217751
  13. Levin V., Borel sections of many valued maps, Siberian Math. J. 19 (1979), 434-438. (1979) Zbl0409.54048
  14. Nadler S.B., Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-483. (1969) MR0254828
  15. Pachpatte B.G., A note on Gronwall-Bellman inequality, J. Math. A.A. 44 (1973), 758-762. (1973) Zbl0274.45011MR0335721
  16. Papageorgiou N.S., Convergence theorems for Banach space valued integrable multifunctions, Intern. J. Math. Sci. 10 (1987), 433-442. (1987) Zbl0619.28009MR0896595
  17. Papageorgiou N.S., On measurable multifunctions with applications to random multivalued equations, Math. Japonica 32 (1987), 437-464. (1987) Zbl0634.28005MR0914749
  18. Papageorgiou N.S., Decomposable sets in the Lebesgue-Bochner spaces, Comment. Math. Univ. Sancti Pauli 37 (1988), 49-62. (1988) Zbl0679.46032MR0942305
  19. Papageorgiou N.S., Existence of solutions for integrodifferential inclusions in Banach spaces, Comment. Math. Univ. Carolinae 32 (1991), 687-696. (1991) Zbl0746.34035MR1159815
  20. Ricceri B., Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes, Atti. Acad. Naz. Linci. U. Sci. Fiz. Math. Nat. 81 (1987), 283-286. (1987) Zbl0666.47030MR0999821
  21. Rybinski L., A fixed point approach in the study of the solution sets of Lipschitzian functional-differential inclusions, JMAA 160 (1991), 24-46. (1991) Zbl0735.34016MR1124074
  22. Staicu V., On a non-convex hyperbolic differential inclusion, Proc. Edinb. Math. Soc., in press. Zbl0769.34018
  23. Tsukada M., Convergence of best approximations in a smooth Banach space, Journal of Approx. Theory 40 (1984), 301-309. (1984) Zbl0545.41042MR0740641
  24. Wagner D., Surveys of measurable selection theorems, SIAM J. Control. Optim. 15 (1977), 857-903. (1977) MR0486391

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.