Applications of the spectral radius to some integral equations
Commentationes Mathematicae Universitatis Carolinae (1995)
- Volume: 36, Issue: 4, page 695-703
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topZima, Mirosława. "Applications of the spectral radius to some integral equations." Commentationes Mathematicae Universitatis Carolinae 36.4 (1995): 695-703. <http://eudml.org/doc/247754>.
@article{Zima1995,
abstract = {In the paper [13] we proved a fixed point theorem for an operator $\mathcal \{A\}$, which satisfies a generalized Lipschitz condition with respect to a linear bounded operator $A$, that is: \[ m(\mathcal \{A\} x-\mathcal \{A\} y)\prec Am(x-y). \]
The purpose of this paper is to show that the results obtained in [13], [14] can be extended to a nonlinear operator $A$.},
author = {Zima, Mirosława},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {fixed point theorem; spectral radius; integral-functional equation; spectral radius; integral-functional equation; fixed point theorem; generalized Lipschitz condition},
language = {eng},
number = {4},
pages = {695-703},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Applications of the spectral radius to some integral equations},
url = {http://eudml.org/doc/247754},
volume = {36},
year = {1995},
}
TY - JOUR
AU - Zima, Mirosława
TI - Applications of the spectral radius to some integral equations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 4
SP - 695
EP - 703
AB - In the paper [13] we proved a fixed point theorem for an operator $\mathcal {A}$, which satisfies a generalized Lipschitz condition with respect to a linear bounded operator $A$, that is: \[ m(\mathcal {A} x-\mathcal {A} y)\prec Am(x-y). \]
The purpose of this paper is to show that the results obtained in [13], [14] can be extended to a nonlinear operator $A$.
LA - eng
KW - fixed point theorem; spectral radius; integral-functional equation; spectral radius; integral-functional equation; fixed point theorem; generalized Lipschitz condition
UR - http://eudml.org/doc/247754
ER -
References
top- Bainov D.D., Mishev D.P., Oscillation theory for neutral differential equations with delay, Adam Hilger, Bristol Philadelphia New York, 1991. Zbl0747.34037MR1147908
- Förster K.-H., Nagy B., On the local spectral radius of a nonnegative element with respect to an irreducible operator, Acta Sci. Math. 55 (1991), 155-166. (1991) MR1124954
- Hristova S.G., Bainov D.D., Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential equations with ``supremum'', J. Math. Anal. Appl. 172 (1993), 339-352. (1993) Zbl0772.34047MR1200990
- Krasnoselski M.A. et al., Näherungsverfahren zur Lösung von Operatorgleichungen, Akademie Verlag, Berlin, 1973. Zbl0269.65001
- Kwapisz M., On the existence and uniqueness of solutions of a certain integral-functional equation, Ann. Polon. Math. 31 (1975), 23-41. (1975) MR0380329
- Myshkis A.D., On some problems of the theory of differential equations with deviating argument (in Russian), Uspehi Mat. Nauk 32 (1977), 173-202. (1977) MR0492443
- Riesz F., Sz.-Nagy B., Functional analysis, Ungar, New York, 1955. Zbl0732.47001MR0071727
- Waẓewski T., Sur un procédé de prouver la convergence des approximations successives sans utilisation des séries de comparaison, Bull. Acad. Polon. Sci. 1 (1960), 45-52. (1960) MR0126109
- Zabrejko P.P., The contraction mapping principle in -metric and locally convex spaces (in Russian), Dokl. Akad. Nauk BSSR 34 (1990), 1065-1068. (1990) MR1095667
- Zabrejko P.P., Krasnoselski M.A., Stecenko V.Ya., On estimations of the spectral radius of the linear positive operators (in Russian), Mat. Zametki 1 (1967), 461-470. (1967) MR0208390
- Zabrejko P.P., Makarevich T.A., On some generalization of the Banach-Caccioppoli principle to operators in pseudometric spaces (in Russian), Diff. Uravn. 23 (1987), 1497-1504. (1987) MR0911361
- Zeidler E., Nonlinear functional analysis and its applications I, Springer Verlag, New York Heidelberg Berlin, 1993. Zbl0583.47050MR0816732
- Zima M., A certain fixed point theorem and its applications to integral-functional equations, Bull. Austral. Math. Soc. 46 (1992), 179-186. (1992) Zbl0761.34048MR1183775
- Zima M., A theorem on the spectral radius of the sum of two operators and its application, Bull. Austral. Math. Soc. 48 (1993), 427-434. (1993) Zbl0795.34069MR1248046
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.