On the conjectures of Rauzy and Shallit for infinite words

Jean-Paul Allouche; Mireille Bousquet-Mélou

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 4, page 705-711
  • ISSN: 0010-2628

Abstract

top
We show a connection between a recent conjecture of Shallit and an older conjecture of Rauzy for infinite words on a finite alphabet. More precisely we show that a Rauzy-like conjecture is equivalent to Shallit's. In passing we correct a misprint in Rauzy's conjecture.

How to cite

top

Allouche, Jean-Paul, and Bousquet-Mélou, Mireille. "On the conjectures of Rauzy and Shallit for infinite words." Commentationes Mathematicae Universitatis Carolinae 36.4 (1995): 705-711. <http://eudml.org/doc/247757>.

@article{Allouche1995,
abstract = {We show a connection between a recent conjecture of Shallit and an older conjecture of Rauzy for infinite words on a finite alphabet. More precisely we show that a Rauzy-like conjecture is equivalent to Shallit's. In passing we correct a misprint in Rauzy's conjecture.},
author = {Allouche, Jean-Paul, Bousquet-Mélou, Mireille},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {combinatorics on words; recurrence function; Sturmian sequences; infinite words; Shallit's conjecture; Rauzy's conjecture; combinatorics on words; length of the longest suffix; recurrence function; length of the shortest prefix},
language = {eng},
number = {4},
pages = {705-711},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the conjectures of Rauzy and Shallit for infinite words},
url = {http://eudml.org/doc/247757},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Allouche, Jean-Paul
AU - Bousquet-Mélou, Mireille
TI - On the conjectures of Rauzy and Shallit for infinite words
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 4
SP - 705
EP - 711
AB - We show a connection between a recent conjecture of Shallit and an older conjecture of Rauzy for infinite words on a finite alphabet. More precisely we show that a Rauzy-like conjecture is equivalent to Shallit's. In passing we correct a misprint in Rauzy's conjecture.
LA - eng
KW - combinatorics on words; recurrence function; Sturmian sequences; infinite words; Shallit's conjecture; Rauzy's conjecture; combinatorics on words; length of the longest suffix; recurrence function; length of the shortest prefix
UR - http://eudml.org/doc/247757
ER -

References

top
  1. Allouche J.-P., Sur la complexité des suites infinies, Bull. Belg. Math. Soc. 1 (1994), 133-143. (1994) Zbl0803.68094MR1318964
  2. Coven E.M., Hedlund G.A., Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153. (1973) Zbl0256.54028MR0322838
  3. Mignosi F., Restivo A., Salemi S., A periodicity theorem on words and applications, Math. Foundations of Computer Science (1995). 
  4. Morse M., Hedlund G.A., Symbolic dynamics, Amer. J. Math. 60 (1938), 815-866. (1938) Zbl0019.33502MR1507944
  5. Morse M., Hedlund G.A., Symbolic dynamics II, Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42. (1940) Zbl0022.34003MR0000745
  6. Mouline J., Contribution à l'étude de la complexité des suites substitutives, Thèse, Université de Provence (1989). (1989) 
  7. Pomerance C., Robson J.M., Shallit J., Automaticity II: descriptional complexity in the unary case, preprint, 1994. Zbl0959.11015MR1453865
  8. Rauzy G., Suites à termes dans un alphabet fini, Sém. de Théorie des Nombres de Bordeaux (1982-1983), 25-01-25-16. (1982-1983) Zbl0547.10048MR0750326
  9. Shallit J., Breitbart Y., Automaticity I: properties of a measure of decriptional complexity, in: P. Enjalbert, E.W. Mayr, K.W. Wagner editors, STACS 94: 11th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science (Springer-Verlag) 775 (1994), 619-630. (1994) MR1288529
  10. Shallit J., Breitbart Y., Automaticity I: properties of a measure of decriptional complexity, preprint, 1994. MR1409007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.