On the existence of 2-fields in 8-dimensional vector bundles over 8-complexes

Martin Čadek; Jiří Vanžura

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 2, page 377-394
  • ISSN: 0010-2628

Abstract

top
Necessary and sufficient conditions for the existence of two linearly independent sections in an 8-dimensional spin vector bundle over a CW-complex of the same dimension are given in terms of characteristic classes and a certain secondary cohomology operation. In some cases this operation is computed.

How to cite

top

Čadek, Martin, and Vanžura, Jiří. "On the existence of 2-fields in 8-dimensional vector bundles over 8-complexes." Commentationes Mathematicae Universitatis Carolinae 36.2 (1995): 377-394. <http://eudml.org/doc/247775>.

@article{Čadek1995,
abstract = {Necessary and sufficient conditions for the existence of two linearly independent sections in an 8-dimensional spin vector bundle over a CW-complex of the same dimension are given in terms of characteristic classes and a certain secondary cohomology operation. In some cases this operation is computed.},
author = {Čadek, Martin, Vanžura, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {span of the vector bundle; classifying spaces for spinor groups; characteristic classes; Postnikov tower; secondary cohomology operation; span of the vector bundle; classifying spaces for spinor groups; Postnikov tower; characteristic classes; secondary cohomology operation},
language = {eng},
number = {2},
pages = {377-394},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the existence of 2-fields in 8-dimensional vector bundles over 8-complexes},
url = {http://eudml.org/doc/247775},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Čadek, Martin
AU - Vanžura, Jiří
TI - On the existence of 2-fields in 8-dimensional vector bundles over 8-complexes
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 2
SP - 377
EP - 394
AB - Necessary and sufficient conditions for the existence of two linearly independent sections in an 8-dimensional spin vector bundle over a CW-complex of the same dimension are given in terms of characteristic classes and a certain secondary cohomology operation. In some cases this operation is computed.
LA - eng
KW - span of the vector bundle; classifying spaces for spinor groups; characteristic classes; Postnikov tower; secondary cohomology operation; span of the vector bundle; classifying spaces for spinor groups; Postnikov tower; characteristic classes; secondary cohomology operation
UR - http://eudml.org/doc/247775
ER -

References

top
  1. Atiyah M., Dupont J., Vector fields with finite singularities, Acta Math. (1972), 128 1-40. (1972) Zbl0233.57010MR0451256
  2. Borel A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. Math. (1953), 57 115-207. (1953) Zbl0052.40001MR0051508
  3. Frank D., On the index of a tangent 2 -field, Topology (1972), 11 245-252. (1972) Zbl0252.57006MR0298689
  4. Hirzebruch F., Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 9, Berlin (1959). (1959) 
  5. Kono A., On the integral cohomology of B S p i n ( n ) , J. Math. Kyoto Univ. (1986), 26:3 333-337. (1986) Zbl0617.55007MR0857221
  6. Massey W.S., On the Stiefel-Whitney classes of a manifold II, Proc. Amer. Math. Soc. (1962), 13 938-942. (1962) Zbl0109.15902MR0142129
  7. Milnor J., Some consequences of a theorem of Bott, Ann. of Math. (1958), 68 444-449. (1958) Zbl0085.17301MR0102805
  8. Mosher R.E., Tangora M.C., Cohomology operations and applications in homotopy theory, Harper & Row, Publishers New York, Evanston and London (1968). (1968) Zbl0153.53302MR0226634
  9. Tze-Beng Ng, On the geometric dimension of the vector bundles, span of a manifold and immersions of manifolds in manifolds, Exposition. Math. (1990), 8 193-226. (1990) MR1062767
  10. Paechter G., The groups π r ( V n , m ) : I, Quart. J. Math., Oxford Ser. (2) (1956), 7 243-268. (1956) MR0131878
  11. Quillen D., The mod 2 cohomology rings of extra-special 2 -groups and the spinor groups, Math. Ann. (1971), 194 197-212. (1971) Zbl0225.55015MR0290401
  12. Thomas E., The index of a tangent 2 -field, Comment. Math. Helvet. (1967), 42 86-110. (1967) Zbl0153.53504MR0215317
  13. Thomas E., Complex structures on real vector bundles, Am. J. Math. (1966), 89 887-908. (1966) MR0220310
  14. Thomas E., On the cohomology of the real Grassmann complexes, Trans. Amer. Math. Soc. (1960), 96 67-89. (1960) Zbl0098.36301MR0121800
  15. Thomas E., On the cohomology groups of the classifying space for the stable spinor group, Bol. Soc. Math. Mex. (1962), 57-69. (1962) Zbl0124.16401MR0153027
  16. Thomas E., Postnikov invariants and higher order cohomology operation, Ann. of Math. (1967), 85 184-217. (1967) MR0210135

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.