# On 4-fields and 4-distributions in 8-dimensional vector bundles over 8-complexes

Colloquium Mathematicae (1998)

- Volume: 76, Issue: 2, page 213-228
- ISSN: 0010-1354

## Access Full Article

top## Abstract

top## How to cite

topČadek, Martin, and Vanžura, Jiří. "On 4-fields and 4-distributions in 8-dimensional vector bundles over 8-complexes." Colloquium Mathematicae 76.2 (1998): 213-228. <http://eudml.org/doc/210561>.

@article{Čadek1998,

abstract = {Let ξ be an oriented 8-dimensional spin vector bundle over an 8-complex. In this paper we give necessary and sufficient conditions for ξ to have 4 linearly independent sections or to be a sum of two 4-dimensional spin vector bundles, in terms of characteristic classes and higher order cohomology operations. On closed connected spin smooth 8-manifolds these operations can be computed.},

author = {Čadek, Martin, Vanžura, Jiří},

journal = {Colloquium Mathematicae},

keywords = {classifying spaces for groups; vector bundle; higher order cohomology operations; characteristic classes; Postnikov tower; distribution},

language = {eng},

number = {2},

pages = {213-228},

title = {On 4-fields and 4-distributions in 8-dimensional vector bundles over 8-complexes},

url = {http://eudml.org/doc/210561},

volume = {76},

year = {1998},

}

TY - JOUR

AU - Čadek, Martin

AU - Vanžura, Jiří

TI - On 4-fields and 4-distributions in 8-dimensional vector bundles over 8-complexes

JO - Colloquium Mathematicae

PY - 1998

VL - 76

IS - 2

SP - 213

EP - 228

AB - Let ξ be an oriented 8-dimensional spin vector bundle over an 8-complex. In this paper we give necessary and sufficient conditions for ξ to have 4 linearly independent sections or to be a sum of two 4-dimensional spin vector bundles, in terms of characteristic classes and higher order cohomology operations. On closed connected spin smooth 8-manifolds these operations can be computed.

LA - eng

KW - classifying spaces for groups; vector bundle; higher order cohomology operations; characteristic classes; Postnikov tower; distribution

UR - http://eudml.org/doc/210561

ER -

## References

top- [AR] J. L. Arraut and D. Randall, Index of tangent fields on compact manifolds, in: Contemp. Math. 12, Amer. Math. Soc., 1982, 31-46. Zbl0505.57007
- [AD] M. Atiyah and J. Dupont, Vector fields with finite singularities, Acta Math. 128 (1972), 1-40. Zbl0233.57010
- [BH] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538. Zbl0097.36401
- [BS] A. Borel and J. P. Serre, Groupes de Lie et puissances réduites de Steenrod, ibid. 75 (1953), 409-448. Zbl0050.39603
- [CV1] M. Čadek and J. Vanžura, On the classification of oriented vector bundles over 9-complexes, Rend. Circ. Math. Palermo (2) Suppl. 37 (1994), 33-40. Zbl0853.57026
- [CV2] M. Čadek and J. Vanžura, On the existence of 2-fields in 8-dimensional vector bundles over 8-com- plexes, Comment. Math. Univ. Carolin. 36 (1995), 377-394. Zbl0921.57016
- [CV3] M. Čadek and J. Vanžura, Almost quaternionic structures on eight-manifolds, Osaka J. Math., to appear. Zbl0902.57027
- [CS] M. C. Crabb and B. Steer, Vector-bundle monomorphisms with finite singularities, Proc. London Math. Soc. (3) 30 (1975), 1-39. Zbl0294.57015
- [D] J. L. Dupont, K-theory obstructions to the existence of vector fields, Acta Math. 113 (1974), 67-80. Zbl0313.57012
- [H] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergeb. Math. Grenzgeb. 9, Springer, Berlin, 1959. Zbl0101.38301
- [K1] U. Koschorke, Vector Fields and Other Vector Bundle Morphisms-a Singularity Approach, Lecture Notes in Math. 847, Springer, 1981. Zbl0459.57016
- [K2] U. Koschorke, Nonstable and stable monomorhisms of vector bundles, preprint, 1995.
- [N1] T. B. Ng, 4-fields on (4k+2)-dimensional manifolds, Pacific J. Math. 129 (1987), 337-347. Zbl0597.57015
- [N2] T. B. Ng, On the geometric dimension of vector bundles, span of a manifold and immersion of manifolds in manifolds, Exposition. Math. 8 (1990), 193-226. Zbl0717.57017
- [Q] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197-212. Zbl0225.55015
- [R1] D. Randall, Tangent frame fields on spin manifolds, Pacific J. Math. 76 (1978), 157-167. Zbl0406.57013
- [R2] D. Randall, On indices of tangent fields with finite singularities, in: Differential Topology (Siegen, 1987), Lecture Notes in Math. 1350, Springer, 1988, 213-240.
- [T1] E. Thomas, Seminar on Fiber Spaces, Lecture Notes in Math. 13, Springer, Berlin, 1966.
- [T2] E. Thomas, Postnikov invariants and higher order cohomology operations, Ann. of Math. 85 (1967), 184-217. Zbl0152.22002
- [T3] E. Thomas, Fields of tangent k-planes on manifolds, Invent. Math. 3 (1967), 334-347. Zbl0162.55402
- [T4] E. Thomas, Vector fields on manifolds, Bull. Amer. Math. Soc. 75 (1969), 643-683. Zbl0183.51703
- [W] L. M. Woodward, The classification of orientable vector bundles over CW complexes of small dimension, Proc. Roy. Soc. Edinburgh Sect. A 92 (1982), 175-179. Zbl0505.55017

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.