Lacunary strong convergence with respect to a sequence of modulus functions

Serpil Pehlivan; Brian Fisher

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 1, page 69-76
  • ISSN: 0010-2628

Abstract

top
The definition of lacunary strong convergence is extended to a definition of lacunary strong convergence with respect to a sequence of modulus functions in a Banach space. We study some connections between lacunary statistical convergence and lacunary strong convergence with respect to a sequence of modulus functions in a Banach space.

How to cite

top

Pehlivan, Serpil, and Fisher, Brian. "Lacunary strong convergence with respect to a sequence of modulus functions." Commentationes Mathematicae Universitatis Carolinae 36.1 (1995): 69-76. <http://eudml.org/doc/247777>.

@article{Pehlivan1995,
abstract = {The definition of lacunary strong convergence is extended to a definition of lacunary strong convergence with respect to a sequence of modulus functions in a Banach space. We study some connections between lacunary statistical convergence and lacunary strong convergence with respect to a sequence of modulus functions in a Banach space.},
author = {Pehlivan, Serpil, Fisher, Brian},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {lacunary sequence; modulus function; statistical convergence; Banach space; lacunary sequence; modulus function; Banach space; statistical convergence},
language = {eng},
number = {1},
pages = {69-76},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Lacunary strong convergence with respect to a sequence of modulus functions},
url = {http://eudml.org/doc/247777},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Pehlivan, Serpil
AU - Fisher, Brian
TI - Lacunary strong convergence with respect to a sequence of modulus functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 1
SP - 69
EP - 76
AB - The definition of lacunary strong convergence is extended to a definition of lacunary strong convergence with respect to a sequence of modulus functions in a Banach space. We study some connections between lacunary statistical convergence and lacunary strong convergence with respect to a sequence of modulus functions in a Banach space.
LA - eng
KW - lacunary sequence; modulus function; statistical convergence; Banach space; lacunary sequence; modulus function; Banach space; statistical convergence
UR - http://eudml.org/doc/247777
ER -

References

top
  1. Connor J.S., The statistical and strong p -Cesàro convergence of sequences, Analysis 8 (1988), 47-63. (1988) Zbl0653.40001MR0954458
  2. Connor J.S., On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), 194-198. (1989) Zbl0693.40007MR1006746
  3. Fast H., Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. (1951) Zbl0044.33605MR0048548
  4. Freedman A.R., Sember J.J., Raphael M., Some Cesàro-type summability spaces, Proc. London Math. Soc. 37 (3) (1978), 508-520. (1978) Zbl0424.40008MR0512023
  5. Freedman A.R.. Sember J.J., Densities and summability, Pacific J. Math. 95 (2) (1981), 293-305. (1981) MR0632187
  6. Fridy J.A., Orhan C., Lacunary statistical summability, J. Math. Anal. Appl. 173 (1993), 497-504. (1993) Zbl0786.40004MR1209334
  7. Fridy J.A., Orhan C., Lacunary statistical convergence, Pacific J. Math. 160 (1993), 45-51. (1993) Zbl0794.60012MR1227502
  8. Kolk E., The statistical convergence in Banach spaces, Acta Comm. Univ. Tartuensis 928 (1991), 41-52. (1991) MR1150232
  9. Lorentz G.G., A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190. (1948) Zbl0031.29501MR0027868
  10. Maddox I.J., A new type of convergence, Math. Proc. Camb. Philos. Soc. 83 (1978), 61-64. (1978) Zbl0392.40001MR0493034
  11. Maddox I.J., Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc. 100 (1986), 161-166. (1986) Zbl0631.46010MR0838663
  12. Maddox I.J., Inclusion between F K spaces and Kuttner’s theorem, Math. Proc. Camb. Philos. Soc. 101 (1987), 523-527. (1987) MR0878899
  13. Nakano H., Concave modulars, J. Math. Soc. Japan 5 (1953), 29-49. (1953) Zbl0050.33402MR0058882
  14. Niven I., Zuckerman H.S., An introduction to the theorem of numbers, 4th ed., Wiley, New York, 1980. MR0572268
  15. Pehlivan S., Sequence space defined by a modulus function, Erc. Univ. J. Sci. 5 (1989), 875-880. (1989) 
  16. Pehlivan S., Fisher B., Some sequence spaces defined by a modulus function, Math. Slovaca 44 (1994), to appear. (1994) MR1361822
  17. Šalát T., On statistically convergent sequences of real numbers, Math. Slovaca 30 (2) (1980), 139-150. (1980) MR0587239
  18. Schoenberg I.J., The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (5) (1959), 361-375. (1959) Zbl0089.04002MR0104946
  19. Ruckle W.H., F K spaces in which the sequence of coordinate vectors is bounded, Can. J. Math. 25 (1973), 973-978. (1973) Zbl0267.46008MR0338731

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.