# A characterization of chaotic functions with entropy zero via their maximal scrambled sets

Francisco Balibrea; Víctor Jiménez López

Mathematica Bohemica (1995)

- Volume: 120, Issue: 3, page 293-298
- ISSN: 0862-7959

## Access Full Article

top## Abstract

top## How to cite

topBalibrea, Francisco, and Jiménez López, Víctor. "A characterization of chaotic functions with entropy zero via their maximal scrambled sets." Mathematica Bohemica 120.3 (1995): 293-298. <http://eudml.org/doc/247783>.

@article{Balibrea1995,

abstract = {In this note we characterize chaotic functions (in the sense of Li and Yorke) with topological entropy zero in terms of the structure of their maximal scrambled sets. In the interim a description of all maximal scrambled sets of these functions is also found.},

author = {Balibrea, Francisco, Jiménez López, Víctor},

journal = {Mathematica Bohemica},

keywords = {chaos in the sense of Li and Yorke; maximal scrambled sets; topological entropy; chaotic functions; scrambled sets; chaos in the sense of Li and Yorke; maximal scrambled sets; topological entropy},

language = {eng},

number = {3},

pages = {293-298},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {A characterization of chaotic functions with entropy zero via their maximal scrambled sets},

url = {http://eudml.org/doc/247783},

volume = {120},

year = {1995},

}

TY - JOUR

AU - Balibrea, Francisco

AU - Jiménez López, Víctor

TI - A characterization of chaotic functions with entropy zero via their maximal scrambled sets

JO - Mathematica Bohemica

PY - 1995

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 120

IS - 3

SP - 293

EP - 298

AB - In this note we characterize chaotic functions (in the sense of Li and Yorke) with topological entropy zero in terms of the structure of their maximal scrambled sets. In the interim a description of all maximal scrambled sets of these functions is also found.

LA - eng

KW - chaos in the sense of Li and Yorke; maximal scrambled sets; topological entropy; chaotic functions; scrambled sets; chaos in the sense of Li and Yorke; maximal scrambled sets; topological entropy

UR - http://eudml.org/doc/247783

ER -

## References

top- R. L. Alder A. G. Konheim, M. H. McAndrew, 10.1090/S0002-9947-1965-0175106-9, Trans. Amer. Mat. Soc. 114 (1965), 309-319. (1965) MR0175106DOI10.1090/S0002-9947-1965-0175106-9
- V. V. Fedorenko A. N. Šarkovskii, J. Smítal, 10.1090/S0002-9939-1990-1017846-5, Proc. Amer. Math. Soc. 110 (1990), 141-148. (1990) MR1017846DOI10.1090/S0002-9939-1990-1017846-5
- V. V. Fedorenko, J. Smítal, Maps of the interval Ljapunov stable on the set of nonwandering points, Acta Math. Univ. Comenian. (N. S.) 60 (1991), 11-14. (1991) MR1120591
- K. Janková, J. Smítal, 10.1017/S0004972700010157, Bull. Austral. Mat. Soc. 34 (1986), 283-292. (1986) MR0854575DOI10.1017/S0004972700010157
- V. Jiménez López, Is Li and Yorke's definition a good tool to measure chaos?, PhD Thesis Universidad de Murcia 1992. (1992)
- M. Kuchta, J. Smítal, Two point scrambled set implies chaos, Proceedings of the European Conference on Iteration Theory (ECIT 87), Caldes de Malavella, Spain, 1987. World Sci. Publishing, Singapore, 1989, pp. 427-430. (1987) MR1085314
- T. Y. Li, J. A. Yorke, 10.2307/2318254, Amer. Math. Monthly 82 (1975), 985-992. (1975) Zbl0351.92021MR0385028DOI10.2307/2318254
- C. Preston, Iterates of piecewise monotone mappings on an interval, Lecture Notes in Mathematics 1347. Springer, Berlin, 1988. (1988) Zbl0684.58002MR0969131
- A. N. Šarkovskii, On cycles and the structure of a continuous map, Ukrain. Mat. Ž. 17 (1965), 104-111. (In Russian.) (1965) MR0186757
- J. Smítal, 10.2307/2000468, Trans. Amer. Mat. Soc. 297 (1986), 269-282. (1986) MR0849479DOI10.2307/2000468

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.