# On $(j,k)$-symmetrical functions

Piotr Liczberski; Jerzy Połubiński

Mathematica Bohemica (1995)

- Volume: 120, Issue: 1, page 13-28
- ISSN: 0862-7959

## Access Full Article

top## Abstract

top## How to cite

topLiczberski, Piotr, and Połubiński, Jerzy. "On $(j,k)$-symmetrical functions." Mathematica Bohemica 120.1 (1995): 13-28. <http://eudml.org/doc/247789>.

@article{Liczberski1995,

abstract = {n the present paper the authors study some families of functions from a complex linear space $X$ into a complex linear space $Y$. They introduce the notion of $(j,k)$-symmetrical function ($k=2,3,\dots $; $j=0,1,\dots ,k-1$) which is a generalization of the notions of even, odd and $k$-symmetrical functions. They generalize the well know result that each function defined on a symmetrical subset $U$ of $X$ can be uniquely represented as the sum of an even function and an odd function.},

author = {Liczberski, Piotr, Połubiński, Jerzy},

journal = {Mathematica Bohemica},

keywords = {$(j,k)$-symmetrical functions; holomorphic function; integral formulas; uniqueness theorem; mean value of a function; a variant of Schwarz lemma; fixed point; spectrum of an operator},

language = {eng},

number = {1},

pages = {13-28},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {On $(j,k)$-symmetrical functions},

url = {http://eudml.org/doc/247789},

volume = {120},

year = {1995},

}

TY - JOUR

AU - Liczberski, Piotr

AU - Połubiński, Jerzy

TI - On $(j,k)$-symmetrical functions

JO - Mathematica Bohemica

PY - 1995

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 120

IS - 1

SP - 13

EP - 28

AB - n the present paper the authors study some families of functions from a complex linear space $X$ into a complex linear space $Y$. They introduce the notion of $(j,k)$-symmetrical function ($k=2,3,\dots $; $j=0,1,\dots ,k-1$) which is a generalization of the notions of even, odd and $k$-symmetrical functions. They generalize the well know result that each function defined on a symmetrical subset $U$ of $X$ can be uniquely represented as the sum of an even function and an odd function.

LA - eng

KW - $(j,k)$-symmetrical functions; holomorphic function; integral formulas; uniqueness theorem; mean value of a function; a variant of Schwarz lemma; fixed point; spectrum of an operator

UR - http://eudml.org/doc/247789

ER -

## References

top- J. Dieudonne, Grundzüge der modernen Analysis, II Auflage, VEB Deutscher Verlag der Wissenschaften, Berlin, 1972. (1972) Zbl0264.26001MR0474358
- W. Fulton J. Harris, Representation theory, Graduate Text Math., Spгinger, 1991. (1991) MR1153249
- E. Janiec, 10.1515/dema-1990-0407, Demonstratio Math. 23, 4 (1990), 879-892. (1990) Zbl0755.32002MR1124740DOI10.1515/dema-1990-0407
- R. Mortini, Lösung der Aufgabe 901, El. Math. 39 (1984), 130-131. (1984)
- J. Mujica, Complex analysis in Banach spaces, Noгth-Holland, Amsterdam, New York, Oxfoгd. Zbl0586.46040
- A. Pfluger, Varianten des Schwarzschen Lemma, El. Math. 40 (1985), 46-47. (1985) Zbl0566.30021MR0803075
- W. Rudin, The fixed-point sets of some holomorphic maps, Bull. Malaysian Math. Soc. (2) 1 (1978), 25-28. (1978) Zbl0413.32012MR0506535
- W. Rudin, Real and complex analysis, (second edition). McGraw-Hill Inc, 1974. (1974) Zbl0278.26001MR0344043

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.