-isomorphic algebraic structures
Mathematica Bohemica (1995)
- Volume: 120, Issue: 1, page 71-81
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topChajda, Ivan, and Emanovský, Petr. "$\Sigma $-isomorphic algebraic structures." Mathematica Bohemica 120.1 (1995): 71-81. <http://eudml.org/doc/247804>.
@article{Chajda1995,
abstract = {For an algebraic structure $=(A,F,R)$ or type $$ and a set $\Sigma $ of open formulas of the first order language $L()$ we introduce the concept of $\Sigma $-closed subsets of $$. The set $\mathbb \{C\}_\Sigma ()$ of all $\Sigma $-closed subsets forms a complete lattice. Algebraic structures $$, $$ of type $$ are called $\Sigma $-isomorphic if $\mathbb \{C\}_\Sigma ()\cong \mathbb \{C\}_\Sigma ()$. Examples of such $\Sigma $-closed subsets are e.g. subalgebras of an algebra, ideals of a ring, ideals of a lattice, convex subsets of an ordered or quasiordered set etc. We study $\Sigma $-isomorphic algebraic structures in dependence on the properties of $\Sigma $.},
author = {Chajda, Ivan, Emanovský, Petr},
journal = {Mathematica Bohemica},
keywords = {closure system; isomorphism; lattice of $\Sigma $-closed subsets; subalgebras; ideals; algebraic structure; $\Sigma $-closed subset; $\Sigma $-isomorphic structures; closure system; isomorphism; lattice of Sigma-closed subsets; subalgebras; ideals},
language = {eng},
number = {1},
pages = {71-81},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$\Sigma $-isomorphic algebraic structures},
url = {http://eudml.org/doc/247804},
volume = {120},
year = {1995},
}
TY - JOUR
AU - Chajda, Ivan
AU - Emanovský, Petr
TI - $\Sigma $-isomorphic algebraic structures
JO - Mathematica Bohemica
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 120
IS - 1
SP - 71
EP - 81
AB - For an algebraic structure $=(A,F,R)$ or type $$ and a set $\Sigma $ of open formulas of the first order language $L()$ we introduce the concept of $\Sigma $-closed subsets of $$. The set $\mathbb {C}_\Sigma ()$ of all $\Sigma $-closed subsets forms a complete lattice. Algebraic structures $$, $$ of type $$ are called $\Sigma $-isomorphic if $\mathbb {C}_\Sigma ()\cong \mathbb {C}_\Sigma ()$. Examples of such $\Sigma $-closed subsets are e.g. subalgebras of an algebra, ideals of a ring, ideals of a lattice, convex subsets of an ordered or quasiordered set etc. We study $\Sigma $-isomorphic algebraic structures in dependence on the properties of $\Sigma $.
LA - eng
KW - closure system; isomorphism; lattice of $\Sigma $-closed subsets; subalgebras; ideals; algebraic structure; $\Sigma $-closed subset; $\Sigma $-isomorphic structures; closure system; isomorphism; lattice of Sigma-closed subsets; subalgebras; ideals
UR - http://eudml.org/doc/247804
ER -
References
top- Birkhoff G., Bennet M. K., The convexity lattice of a poset, Order 2 (1985), 223-242. (1985) MR0824696
- Blum E. K., Estes D. R., 10.1007/BF02485424, Algebra Univ. 7 (1977), 143-161. (1977) MR0434926DOI10.1007/BF02485424
- Chajda I., Lattices in quasiordered sets, Acta Univ. Palack. Olom. 31 (1992), 6-12. (1992) Zbl0773.06002MR1212600
- Emanovský P., Convex isomorphic ordered sets, Matem. Bohem. 118 (1993), 29-35. (1993) MR1213830
- Emanovský P., Convex isomorphism of q-lattices, Matem. Bohem. 118 (1993), 37-42. (1993) Zbl0780.06002MR1213831
- Grätzer G., Universal algebra, (2nd edition), Springer-Verlag, 1979. (1979) MR0538623
- Jakubíková-Studenovská D., Convex subsets of partial monounary algebras, Czech. Math. J. 38 (113) (1988), 655-672. (1988) MR0962909
- Maľcev A. I, Algebraic systems, Nauka, Moskva, 1970. (In Russian.) (1970) MR0282908
- Marmazajev V. I., The lattice of convex sublattices of a lattice, Mezvužovskij naučnyj sbornik 6. Saratov, 1986, pp. 50-58. (In Russian.) (1986) MR0957970
- Snášel V., -lattices, PhD - thesis. Palacky University, Olomouc, 1991. (1991)
- Chajda I., Halas R., Genomorphism of lattices and semilattices, Acta-UPO. To appear. MR1385742
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.