On the computation of quadratic -class groups
Journal de théorie des nombres de Bordeaux (1996)
- Volume: 8, Issue: 2, page 283-313
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] W. Bosma, J.J. Cannon, C. Playoust, The Magma algebra system I: the user language, J. Symbolic Comput. (to appear). Zbl0898.68039
- W. Bosma and P. Stevenhagen, Density computations for real quadratic units, Math. Comp.65 (1996), no. 215, 1327-1337. Zbl0859.11064MR1344607
- [2] H. Cohen, A course in computational algebraic number theory, Springer GTM138, 1993. Zbl0786.11071MR1228206
- [3] H. Cohen, F. Diaz y Diaz, M. Olivier, Calculs de nombres de classes et de régulateurs de corps quadratiques en temps sous-exponentiel, Séminaire de Théorie des Nombres Paris 1990-91, Birkhäuser, 1993, pp. 35-46. Zbl0822.11086MR1263522
- [4] D.A. Cox, Primes of the form x2 + ny2, Wiley-Interscience, 1989. Zbl0701.11001MR1028322
- [5] S. Düllmann, Ein Algorithmus zur Bestimmung der Klassengruppe positiv definiter binärer quadratischer Formen, Dissertation, Universität des Saarlandes, Saarbrücken, 1991.
- [6] C.F. Gauss, Disquisitiones Arithmeticae, Gerhard Fleischer, Leipzig, 1801.
- [7] J. Hafner, K. McCurley, A rigorous subexponential algorithm for computation of class groups, J. Amer. Math. Soc.2 (1989), no. 4, 837-850. Zbl0702.11088MR1002631
- [8] J.C. Lagarias, Worst-case complexity bounds for algorithms in the theory of integral quadratic forms, J. of Algorithms1 (1980),142-186. Zbl0473.68030MR604862
- J.C. Lagarias, On the computational complexity of determining the solvability or un-solvability of the equation X2 - DY2 = -1, Trans. Amer. Math. Soc.260 (1980), no. 2, 485-508. Zbl0446.10014MR574794
- D. Shanks, Gauss's ternary form reduction and the 2-Sylow subgroup, Math. Comp.25 (1971), no. 116, 837-853Erratum: Math. Comp.32 (1978), 1328-1329. Zbl0227.12002MR491495
- [9] P. Stevenhagen, The number of real quadratic fields having units of negative norm, Exp. Math.2 (1993), no. 2,121-136. Zbl0792.11041MR1259426
- P. Stevenhagen, A density conjecture for the negative Pell equation, ComputationalAlgebra and Number Theory, Sydney1992, Kluwer Academic Publishers, 1995, pp. 187-200. Zbl0838.11066MR1344930