Some problems on mean values of the Riemann zeta-function

Aleksandar Ivić

Journal de théorie des nombres de Bordeaux (1996)

  • Volume: 8, Issue: 1, page 101-123
  • ISSN: 1246-7405

Abstract

top
Several problems and results on mean values of ζ ( s ) are discussed. These include mean values of | ζ ( 1 2 + i t ) | and the fourth moment of | ζ ( σ + i t ) | for 1 / 2 < σ < 1 .

How to cite

top

Ivić, Aleksandar. "Some problems on mean values of the Riemann zeta-function." Journal de théorie des nombres de Bordeaux 8.1 (1996): 101-123. <http://eudml.org/doc/247820>.

@article{Ivić1996,
abstract = {Several problems and results on mean values of $\zeta (s)$ are discussed. These include mean values of $|\zeta (\frac\{1\}\{2\} + it)|$ and the fourth moment of $|\zeta (\sigma + it)|$ for $1/2 &lt; \sigma &lt; 1$.},
author = {Ivić, Aleksandar},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Riemann zeta-function; mean values; asymptotic formulas; mean values of the Riemann zeta-function; fractional moments; fourth power moment; error term; asymptotic formula},
language = {eng},
number = {1},
pages = {101-123},
publisher = {Université Bordeaux I},
title = {Some problems on mean values of the Riemann zeta-function},
url = {http://eudml.org/doc/247820},
volume = {8},
year = {1996},
}

TY - JOUR
AU - Ivić, Aleksandar
TI - Some problems on mean values of the Riemann zeta-function
JO - Journal de théorie des nombres de Bordeaux
PY - 1996
PB - Université Bordeaux I
VL - 8
IS - 1
SP - 101
EP - 123
AB - Several problems and results on mean values of $\zeta (s)$ are discussed. These include mean values of $|\zeta (\frac{1}{2} + it)|$ and the fourth moment of $|\zeta (\sigma + it)|$ for $1/2 &lt; \sigma &lt; 1$.
LA - eng
KW - Riemann zeta-function; mean values; asymptotic formulas; mean values of the Riemann zeta-function; fractional moments; fourth power moment; error term; asymptotic formula
UR - http://eudml.org/doc/247820
ER -

References

top
  1. [1] R. Balasubramanian, On the frequency of Titchmarsh's phenomenon for ζ(s) IV, Hardy-Ramanujan J.9 (1986), 1-10. Zbl0662.10030
  2. [2] R. Balasubramanian, A. Ivić and K. Ramachandra, The mean square of the Riemann zeta-function on the line σ = 1, L'Enseignement Mathématique38 (1992), 13-25. Zbl0753.11028
  3. [3] J.-M. Deshouillers and H. Iwaniec, Power mean values of the Riemann zeta-function, Mathematika29 (1982), 202-212. Zbl0506.10032MR696876
  4. [4] A. Ivić, The Riemann zeta-function, John Wiley & Sons, New York, (1985). Zbl0556.10026MR792089
  5. [5] A. Ivić, The mean values of the Riemann zeta-function, Tata Institute for Fundamental Research LN's82, Bombay1991 (distr. by Springer Verlag, Berlin etc., 1992). MR1230387
  6. [6] A. Ivić, The moments of the zeta-function on the line σ =1, Nagoya Math. J.135 (1994), 113-129. Zbl0804.11048
  7. [7] A. Ivić and A. Perelli, Mean values of certain zeta-functions on the critical line, Litovskij Mat. Sbornik29 (1989), 701-714. Zbl0706.11049MR1060670
  8. [8] A. Ivić and Y. Motohashi, The mean square of the error term for the fourth moment of the zeta-function, Proc. London Math. Soc. (3) 69 (1994), 309-329. Zbl0805.11060MR1281967
  9. [9] D. Joyner, Distribution theorems for L-functions, Longman Scientific & Technical, Essex (1986). Zbl0609.10032MR865983
  10. [10] A. Laurinčinkas, The limit theorem for the Riemann zeta-function on the critical line I, (Russian), Litovskij Mat. Sbornik27 (1987), 113-132 and II ibid.27 (1987), 459-500. Zbl0641.10031
  11. [11] K. Matsumoto, The mean square of the Riemann zeta-function in the critical strip, Japan. J. Math.13 (1989), 1-13. Zbl0684.10035MR1053629
  12. [12] K. Matsumoto and T. Meurman, The mean square of the Riemann zeta-function in the critical strip II, Acta Arith.68 (1994), 369-382; III, Acta Arith.64 (1993), 357-382. Zbl0788.11035MR1307453
  13. [13] K. Ramachandra, Some remarks on the mean value of the Riemann zeta-function and other Dirichlet series IV, J. Indian Math. Soc.60 (1994), 107-122. Zbl0882.11049MR1292129
  14. [14] K. Ramachandra, Lectures on the mean-value and omega-theorems for the Riemann zeta-function, LNs 85, Tata Institute of Fundamental Research, Bombay1995 (distr. by Springer Verlag, Berlin etc.). Zbl0845.11003MR1332493
  15. [15] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math.31 (1980), 161-170. Zbl0412.10030MR552470
  16. [16] E.C. Titchmarsh, The theory of the Riemann zeta-function (2nd ed.), Oxford, Clarendon Press, (1986). Zbl0601.10026MR882550

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.