On mean values of some zeta-functions in the critical strip

Aleksandar Ivić

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 163-178
  • ISSN: 1246-7405

Abstract

top
For a fixed integer k 3 , and fixed 1 2 < σ < 1 we consider 1 T ζ ( σ + i t ) 2 k d t = n = 1 d k 2 ( n ) n - 2 σ T + R ( k , σ ; T ) , where R ( k , σ ; T ) = 0 ( T ) ( T ) is the error term in the above asymptotic formula. Hitherto the sharpest bounds for R ( k , σ ; T ) are derived in the range min ( β k , σ k * ) < σ < 1 . We also obtain new mean value results for the zeta-function of holomorphic cusp forms and the Rankin-Selberg series.

How to cite

top

Ivić, Aleksandar. "On mean values of some zeta-functions in the critical strip." Journal de théorie des nombres de Bordeaux 15.1 (2003): 163-178. <http://eudml.org/doc/249093>.

@article{Ivić2003,
abstract = {For a fixed integer $k \ge 3$, and fixed $\frac\{1\}\{2\} &lt; \sigma &lt; 1$ we consider\begin\{equation*\} \int ^T\_1 \left| \zeta (\sigma + it)\right|^\{2k\} dt = \sum ^ \infty \_\{n=1\} d^2\_k (n)n^\{-2 \sigma \} T + R (k, \sigma ; T),\end\{equation*\}where $R(k, \sigma ; T) = 0(T) (T \rightarrow \infty )$ is the error term in the above asymptotic formula. Hitherto the sharpest bounds for $R(k, \sigma ; T)$ are derived in the range min $(\beta _k, \sigma ^\ast _k) &lt; \sigma &lt; 1$. We also obtain new mean value results for the zeta-function of holomorphic cusp forms and the Rankin-Selberg series.},
author = {Ivić, Aleksandar},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {mean-value; Riemann zeta-function},
language = {eng},
number = {1},
pages = {163-178},
publisher = {Université Bordeaux I},
title = {On mean values of some zeta-functions in the critical strip},
url = {http://eudml.org/doc/249093},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Ivić, Aleksandar
TI - On mean values of some zeta-functions in the critical strip
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 163
EP - 178
AB - For a fixed integer $k \ge 3$, and fixed $\frac{1}{2} &lt; \sigma &lt; 1$ we consider\begin{equation*} \int ^T_1 \left| \zeta (\sigma + it)\right|^{2k} dt = \sum ^ \infty _{n=1} d^2_k (n)n^{-2 \sigma } T + R (k, \sigma ; T),\end{equation*}where $R(k, \sigma ; T) = 0(T) (T \rightarrow \infty )$ is the error term in the above asymptotic formula. Hitherto the sharpest bounds for $R(k, \sigma ; T)$ are derived in the range min $(\beta _k, \sigma ^\ast _k) &lt; \sigma &lt; 1$. We also obtain new mean value results for the zeta-function of holomorphic cusp forms and the Rankin-Selberg series.
LA - eng
KW - mean-value; Riemann zeta-function
UR - http://eudml.org/doc/249093
ER -

References

top
  1. [1] R. Balasubramanian, A. Ivić, K. Ramachandra, An application of the Hooley-Huxley contour. Acta Arith.65 (1993), 45-51. Zbl0781.11035MR1239242
  2. [2] K. Chandrasekharan, R. Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions. Ann. of Math.76 (1962), 93-136. Zbl0211.37901MR140491
  3. [3] K. Chandrasekharan, R. Narasimhan, The approximate functional equation for a class of zeta-functions. Math. Ann.152 (1963), 30-64. Zbl0116.27001MR153643
  4. [4] A. Ivić, The Riemann zeta-function, John Wiley & Sons, New York, 1985. Zbl0556.10026MR792089
  5. [5] A. Ivić, Large values of certain number-theoretic error terms. Acta Arith.56 (1990), 135-159. Zbl0659.10053MR1075641
  6. [6] A. Ivić, On zeta-functions associated with Fourier coefficients of cusp forms. Proceedings of the Amalfi Conference on Analytic Number Theory (Amalfi, September 1989), Università di Salerno, Salerno1992, pp. 231-246. Zbl0787.11035MR1220467
  7. [7] A. Ivić, Some problems on mean values of the Riemann zeta-function. J. Théor. Nombres Bordeaux8 (1996), 101-123. Zbl0858.11045MR1399949
  8. [8] A. Ivić, On some conjectures and results for the Riemann zeta-function and Hecke series. Acta Arith.99 (2001), no. 2, 115-145. Zbl0984.11043MR1847617
  9. [9] A. Ivić, M. Ouellet, Some new estimates in the Dirichlet divisor problem. Acta Arith.52 (1989), 241-253. Zbl0619.10041MR1031337
  10. [10] A. Ivić, K. Matsumoto, On the error term in the mean square formula for the Riemann zeta-function in the critical strip. Monatsh. Math.121 (1996), 213-229. Zbl0843.11039MR1383532
  11. [11] A. Ivić, K. Matsumoto, Y. Tanigawa, On Riesz means of the coefficients of the Rankin-Selberg series. Math. Proc. Camb. Phil. Soc.127 (1999), 117-131. Zbl0958.11065MR1692491
  12. [12] S. Kanemitsu, A. Sankaranarayanan, Y. Tanigawa, A mean value theorm for Dirichlet series and a general divisor problem, to appear. Zbl1022.11047
  13. [13] K. Matsumoto, The mean values and the universality of Rankin-Selberg L-functions. Proc. Turku Symposium on Number Theory in Memory of K. Inkeri, May 31-June 4, 1999, Walter de Gruyter, Berlin etc., 2001, in print. Zbl0972.11075MR1822011
  14. [14] A. Perelli, General L-functions. Ann. Mat. Pura Appl.130 (1982), 287-306. Zbl0485.10030MR663975
  15. [15] R.A. Rankin, Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. II, The order of Fourier coefficients of integral modular forms. Math. Proc. Cambridge Phil. Soc.35 (1939), 357-372. Zbl0021.39202
  16. [16] R.A. Rankin, Modular Forms. Ellis Horwood Ltd., Chichester, England, 1984. Zbl0546.00010MR803359
  17. [17] H.-E. Richert, Über Dirichletreihen mit Funktionalgleichung. Publs. Inst. Math. (Belgrade) 11 (1957), 73-124. Zbl0082.05802MR92816
  18. [18] A. Selberg, Old and new conjectures and results about a class of Dirichlet series. Proc. Amalfi Conf. Analytic Number Theory, eds. E. Bombieri et al., Università di Salerno, Salerno, 1992, pp. 367-385. Zbl0787.11037MR1220477
  19. [19] E.C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edition.Oxford University Press, Oxford, 1986. Zbl0601.10026MR882550
  20. [20] Zhang Wenpeng, On the divisor problem. Kexue Tongbao33 (1988), 1484-1485. MR969977

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.