Universal codes and unimodular lattices

Robin Chapman; Patrick Solé

Journal de théorie des nombres de Bordeaux (1996)

  • Volume: 8, Issue: 2, page 369-376
  • ISSN: 1246-7405

Abstract

top
Binary quadratic residue codes of length p + 1 produce via construction B and density doubling type II lattices like the Leech. Recently, quaternary quadratic residue codes have been shown to produce the same lattices by construction A modulo 4 . We prove in a direct way the equivalence of these two constructions for p 31 . In dimension 32, we obtain an extremal lattice of type II not isometric to the Barnes-Wall lattice B W 32 . The equivalence between construction B modulo 4 plus density doubling and construction A modulo 8 is also considered. In dimension 48 they both led to a new description of the extremal type II lattice P 48 q .

How to cite

top

Chapman, Robin, and Solé, Patrick. "Universal codes and unimodular lattices." Journal de théorie des nombres de Bordeaux 8.2 (1996): 369-376. <http://eudml.org/doc/247828>.

@article{Chapman1996,
abstract = {Binary quadratic residue codes of length $p + 1$ produce via construction $B$ and density doubling type II lattices like the Leech. Recently, quaternary quadratic residue codes have been shown to produce the same lattices by construction $A$ modulo $4$. We prove in a direct way the equivalence of these two constructions for $p \le 31$. In dimension 32, we obtain an extremal lattice of type II not isometric to the Barnes-Wall lattice $BW_\{32\}$. The equivalence between construction $B$ modulo $4$ plus density doubling and construction $A$ modulo $8$ is also considered. In dimension 48 they both led to a new description of the extremal type II lattice $P_\{48q\}$.},
author = {Chapman, Robin, Solé, Patrick},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {quadratic residue codes; lattices; construction A; construction B; density doubling; unimodular lattices},
language = {eng},
number = {2},
pages = {369-376},
publisher = {Université Bordeaux I},
title = {Universal codes and unimodular lattices},
url = {http://eudml.org/doc/247828},
volume = {8},
year = {1996},
}

TY - JOUR
AU - Chapman, Robin
AU - Solé, Patrick
TI - Universal codes and unimodular lattices
JO - Journal de théorie des nombres de Bordeaux
PY - 1996
PB - Université Bordeaux I
VL - 8
IS - 2
SP - 369
EP - 376
AB - Binary quadratic residue codes of length $p + 1$ produce via construction $B$ and density doubling type II lattices like the Leech. Recently, quaternary quadratic residue codes have been shown to produce the same lattices by construction $A$ modulo $4$. We prove in a direct way the equivalence of these two constructions for $p \le 31$. In dimension 32, we obtain an extremal lattice of type II not isometric to the Barnes-Wall lattice $BW_{32}$. The equivalence between construction $B$ modulo $4$ plus density doubling and construction $A$ modulo $8$ is also considered. In dimension 48 they both led to a new description of the extremal type II lattice $P_{48q}$.
LA - eng
KW - quadratic residue codes; lattices; construction A; construction B; density doubling; unimodular lattices
UR - http://eudml.org/doc/247828
ER -

References

top
  1. [1] A. Bonnecaze, P. Solé, C. Bachoc, B. Mourrain, 'Type II Quaternary Codes' IEEE Trans. Inform. Theory, submitted (1995). Zbl0898.94009
  2. [2] A. Bonnecaze, P. Solé & A.R. Calderbank, 'Quaternary quadratic residue codes and unimodular lattices', IEEE Trans. Inform. Theory, vol. 41, pp. 366-377, March 1995. Zbl0822.94009MR1326285
  3. [3] A.R. Calderbank, private communication (1995). 
  4. [4] A.R. Calderbank, G. MacGuire, P.V. Kumar, T. Helleseth, Cyclic Codes over Z4, Locator polynomials, and Newton identities, preprint (1995). MR1326293
  5. [5] A.R. Calderbank, N.J.A. Sloane, 'Double Circulant Codes over Z4 and Unimodular Lattices', J. of Algebraic Combinatorics, submitted. Zbl0881.94026
  6. [6] J.H. Conway & N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, 1988. Zbl0634.52002MR920369
  7. [7] G.D. Forney, 'Coset Codes II: Binary Lattices and related codes', IEEE Trans. Information Th. IT-34 (1988) 1152-1187. Zbl0665.94019MR987662
  8. [8] H. Koch & B.B. Venkov, Ueber Ganzhalige Unimodulare Euklidische Gitter, Crelle398 (1989) 144-168. Zbl0667.10020MR998477
  9. [9] P. Loyer, P. Solé, 'Les Réseaux BW32 et U32 sont équivalents', J. de Th. des Nombres de Bordeaux6 (1994) 359-362. Zbl0818.11027MR1360650
  10. [10] F.J. MacWilliams, N.J.A. Sloane, The theory of error correcting codesNorth-Holland (1977). Zbl0657.94010
  11. [11] V. Pless, Z. Qian, 'Cyclic Codes and Quadratic Residue Codes over Z4 ', IEEE Trans. Information Theory submitted. Zbl0859.94018MR1426232
  12. [12] H-G. Quebbemann, 'Zur Klassifikation unimodularer Gitter mit Isometrie von Primzahlordnung', Crelle326 (1981) 158-170. Zbl0452.10027MR622351
  13. [13] R. Schulze-Pillot, 'Quadratic Residue Codes and Cyclotomic lattices ', Arch. Math., Vol. 60 (1993) 40-65. Zbl0792.11008MR1193092

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.