Limit theorem in the space of continuous functions for the Dirichlet polynomial related with the Riemann zeta-funtion
Journal de théorie des nombres de Bordeaux (1996)
- Volume: 8, Issue: 2, page 315-329
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H. Bohr and B. Jessen, Über die Wertverteilung der Riemannschen Zeta funktion, Ernste Mitteilung, Acta Math.51 (1930), 1-35. Zbl56.0287.01JFM56.0287.01
- [2] H. Bohr and B. Jessen, Über die Wertverteilung der Riemannschen Zeta funktion, Zweite Mitteilung, Acta Math.58 (1932),1-55. Zbl0003.38901JFM58.0321.02
- [3] B. Jessen and A. Wintner, Distribution functions and the Riemann zeta-function, Trans.Amer.Math.Soc.38 (1935), 48-88. Zbl0014.15401MR1501802JFM61.0462.03
- [4] V. Borchsenius and B. Jessen, Mean motions and values of the Riemann zeta-function, Acta Math.80 (1948), 97-166. Zbl0038.23201MR27796
- [5] A. Laurinčikas, Limit theorems for the Riemann zeta-function on the complex space, Prob. Theory and Math. Stat., 2, Proceedings of the Fifth Vilnius Conference, VSP/Mokslas (1990), 59-69. Zbl0733.11030MR1153860
- [7] A.P. Laurincikas, Distribution of values of complex-valued functions, Litovsk. Math. Sb.15 Nr.2 (1975), 25-39, (in Russian); English transl. in Lithuanian Math. J., 15, 1975. Zbl0311.10047MR384720
- [8] D. Joyner, Distribution Theorems for L-functions, John Wiley (986). Zbl0609.10032
- [9] A.P. Laurincikas, A limit theorem for the Riemann zeta-function close to the critical line. II, Mat. Sb., 180, 6 (1989), 733-+749, (in Russian); English transl. in Math. USSR Sbornik, 67, 1990. Zbl0703.11037MR1015037
- [10] A. Laurincikas, A limit theorem for the Riemann zeta-function in the complex space, Acta Arith.53 (1990), 421-432. Zbl0713.11057MR1075034
- [11] D.R. Heath-Brown, Fractional moments of the Riemann zeta-function, J.London Math. Soc.24(2) (1981), 65-78. Zbl0431.10024MR623671
- [12] A. Ivic, The Riemann zeta-functionJohn Wiley, 1985. Zbl0556.10026MR792089
- [13] P. Billingsley, Convergence of Probability Measures, John Wiley, 1968. Zbl0172.21201MR233396
- [14] H. Heyer, Probability measures on locally compact groups, Springer-Verlag, Berlin-Heidelberg- New York (1977). Zbl0376.60002MR501241
- [15] H.L. Montgomery and R.C. Vaughan, Hilbert's inequality, J. London Math. Soc.8(2) (1974), 73-82. Zbl0281.10021MR337775