Limit theorem in the space of continuous functions for the Dirichlet polynomial related with the Riemann zeta-funtion

Antanas Laurinčikas

Journal de théorie des nombres de Bordeaux (1996)

  • Volume: 8, Issue: 2, page 315-329
  • ISSN: 1246-7405

Abstract

top
A limit theorem in the space of continuous functions for the Dirichlet polynomial m T d κ T ( m ) m σ T + i t where d κ T ( m ) denote the coefficients of the Dirichlet series expansion of the function ζ κ T ( s ) in the half-plane σ > 1 κ T = ( 2 - 1 log l T ) - 1 2 , σ T = 1 2 + 1 n 2 l T l T and l T > 0 , l T 1n T and l T as T , is proved.

How to cite

top

Laurinčikas, Antanas. "Limit theorem in the space of continuous functions for the Dirichlet polynomial related with the Riemann zeta-funtion." Journal de théorie des nombres de Bordeaux 8.2 (1996): 315-329. <http://eudml.org/doc/247829>.

@article{Laurinčikas1996,
abstract = {A limit theorem in the space of continuous functions for the Dirichlet polynomial\begin\{equation*\} \sum \_\{m \le T\} \frac\{d\_\{\kappa \_T\} (m)\}\{m^\{\sigma \_\{T\}+ it\}\} \end\{equation*\}where $d_\{\kappa _T\} (m)$ denote the coefficients of the Dirichlet series expansion of the function $\zeta ^\{\kappa _T\} (s)$ in the half-plane $\sigma &gt; 1$$\kappa _T = (2^\{-1\} \log l_T)^\{ - \frac\{1\}\{2\}\}$, $\sigma _T = \frac\{1\}\{2\} + \frac\{1n^2 l_T\}\{l_T\}$ and $l_T &gt; 0$, $l_T \le $ 1n $T$ and $l_T \rightarrow \infty $ as $T \rightarrow \infty $, is proved.},
author = {Laurinčikas, Antanas},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Dirichlet polynomial; Riemann zeta-function; distribution; limit theorem; space of continuous functions},
language = {eng},
number = {2},
pages = {315-329},
publisher = {Université Bordeaux I},
title = {Limit theorem in the space of continuous functions for the Dirichlet polynomial related with the Riemann zeta-funtion},
url = {http://eudml.org/doc/247829},
volume = {8},
year = {1996},
}

TY - JOUR
AU - Laurinčikas, Antanas
TI - Limit theorem in the space of continuous functions for the Dirichlet polynomial related with the Riemann zeta-funtion
JO - Journal de théorie des nombres de Bordeaux
PY - 1996
PB - Université Bordeaux I
VL - 8
IS - 2
SP - 315
EP - 329
AB - A limit theorem in the space of continuous functions for the Dirichlet polynomial\begin{equation*} \sum _{m \le T} \frac{d_{\kappa _T} (m)}{m^{\sigma _{T}+ it}} \end{equation*}where $d_{\kappa _T} (m)$ denote the coefficients of the Dirichlet series expansion of the function $\zeta ^{\kappa _T} (s)$ in the half-plane $\sigma &gt; 1$$\kappa _T = (2^{-1} \log l_T)^{ - \frac{1}{2}}$, $\sigma _T = \frac{1}{2} + \frac{1n^2 l_T}{l_T}$ and $l_T &gt; 0$, $l_T \le $ 1n $T$ and $l_T \rightarrow \infty $ as $T \rightarrow \infty $, is proved.
LA - eng
KW - Dirichlet polynomial; Riemann zeta-function; distribution; limit theorem; space of continuous functions
UR - http://eudml.org/doc/247829
ER -

References

top
  1. [1] H. Bohr and B. Jessen, Über die Wertverteilung der Riemannschen Zeta funktion, Ernste Mitteilung, Acta Math.51 (1930), 1-35. Zbl56.0287.01JFM56.0287.01
  2. [2] H. Bohr and B. Jessen, Über die Wertverteilung der Riemannschen Zeta funktion, Zweite Mitteilung, Acta Math.58 (1932),1-55. Zbl0003.38901JFM58.0321.02
  3. [3] B. Jessen and A. Wintner, Distribution functions and the Riemann zeta-function, Trans.Amer.Math.Soc.38 (1935), 48-88. Zbl0014.15401MR1501802JFM61.0462.03
  4. [4] V. Borchsenius and B. Jessen, Mean motions and values of the Riemann zeta-function, Acta Math.80 (1948), 97-166. Zbl0038.23201MR27796
  5. [5] A. Laurinčikas, Limit theorems for the Riemann zeta-function on the complex space, Prob. Theory and Math. Stat., 2, Proceedings of the Fifth Vilnius Conference, VSP/Mokslas (1990), 59-69. Zbl0733.11030MR1153860
  6. [7] A.P. Laurincikas, Distribution of values of complex-valued functions, Litovsk. Math. Sb.15 Nr.2 (1975), 25-39, (in Russian); English transl. in Lithuanian Math. J., 15, 1975. Zbl0311.10047MR384720
  7. [8] D. Joyner, Distribution Theorems for L-functions, John Wiley (986). Zbl0609.10032
  8. [9] A.P. Laurincikas, A limit theorem for the Riemann zeta-function close to the critical line. II, Mat. Sb., 180, 6 (1989), 733-+749, (in Russian); English transl. in Math. USSR Sbornik, 67, 1990. Zbl0703.11037MR1015037
  9. [10] A. Laurincikas, A limit theorem for the Riemann zeta-function in the complex space, Acta Arith.53 (1990), 421-432. Zbl0713.11057MR1075034
  10. [11] D.R. Heath-Brown, Fractional moments of the Riemann zeta-function, J.London Math. Soc.24(2) (1981), 65-78. Zbl0431.10024MR623671
  11. [12] A. Ivic, The Riemann zeta-functionJohn Wiley, 1985. Zbl0556.10026MR792089
  12. [13] P. Billingsley, Convergence of Probability Measures, John Wiley, 1968. Zbl0172.21201MR233396
  13. [14] H. Heyer, Probability measures on locally compact groups, Springer-Verlag, Berlin-Heidelberg- New York (1977). Zbl0376.60002MR501241
  14. [15] H.L. Montgomery and R.C. Vaughan, Hilbert's inequality, J. London Math. Soc.8(2) (1974), 73-82. Zbl0281.10021MR337775

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.