# A new lower bound for the football pool problem for $7$ matches

Journal de théorie des nombres de Bordeaux (1996)

- Volume: 8, Issue: 2, page 481-484
- ISSN: 1246-7405

## Access Full Article

top## Abstract

top## How to cite

topHabsieger, Laurent. "A new lower bound for the football pool problem for $7$ matches." Journal de théorie des nombres de Bordeaux 8.2 (1996): 481-484. <http://eudml.org/doc/247830>.

@article{Habsieger1996,

abstract = {Let $K_3 (7,1)$ denote the minimum cardinality of a ternary code of length $7$ and covering radius one. In a previous paper, we improved on the lower bound $K_3(7,1) \ge 147$ by showing that $K_3(7,1) \ge 150$. In this note, we prove that $K_3(7,1) \ge 153$.},

author = {Habsieger, Laurent},

journal = {Journal de théorie des nombres de Bordeaux},

keywords = {ternary code; covering radius},

language = {eng},

number = {2},

pages = {481-484},

publisher = {Université Bordeaux I},

title = {A new lower bound for the football pool problem for $7$ matches},

url = {http://eudml.org/doc/247830},

volume = {8},

year = {1996},

}

TY - JOUR

AU - Habsieger, Laurent

TI - A new lower bound for the football pool problem for $7$ matches

JO - Journal de théorie des nombres de Bordeaux

PY - 1996

PB - Université Bordeaux I

VL - 8

IS - 2

SP - 481

EP - 484

AB - Let $K_3 (7,1)$ denote the minimum cardinality of a ternary code of length $7$ and covering radius one. In a previous paper, we improved on the lower bound $K_3(7,1) \ge 147$ by showing that $K_3(7,1) \ge 150$. In this note, we prove that $K_3(7,1) \ge 153$.

LA - eng

KW - ternary code; covering radius

UR - http://eudml.org/doc/247830

ER -

## References

top- [1] W. Chen And I.S. Honkala, Lower bounds for q-ary covering codes, IEEE Trans. Inform. Theory36 (1990), 664-671. Zbl0703.94014MR1053861
- [2] G.D. Cohen, S.N. Litsyn, A.C. Lobstein and H.F. Mattson, Covering radius 1985-1994, preprint. Zbl0873.94025
- [3] L. Habsieger, Lower bounds for q-ary coverings by spheres of radius one, J. Combin. Theory Ser. A67 (1994), 199-222. Zbl0815.94021MR1284408
- [4] L. Habsieger, Binary codes with covering radius one: some new lower bounds, Discrete Mathematics, to appear. Zbl0898.94016MR1477282

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.